Photoinduced Decarbonylative Rearrangement of Bicyclo[2.2.2]Octenones: Synthesis of the Marasmane Skeleton

Chun-Chieh Wang, Yi-Chen Ku, and Gary Jing Chuang*

Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan

Supporting Information

ABSTRACT: The marasmane sesquiterpenoid structure can be found in the skeleton of a variety of natural products bearing interesting bioactivity. The unique fused-5,6,3-tricyclic ring structure, in which the rings are *cis*-fused and the five- and three-membered rings are mutually *trans*, provides a synthetic challenge for organic chemists. In this work, we took advantage

of the photoinduced decarbonylative rearrangement of bicyclo[2.2.2]octenone to develop a new methodology for construction of the highly functionalized fused-5,6,3-tricyclic ring structure in a concise reaction sequence.

INTRODUCTION

Isolated from the basidiomycete species of the genus *Lactarius*,¹ marasmane sesquiterpenoids are known for their unique fused-5,6,3-tricyclic ring skeleton²(Figure 1). Aside from being a

Figure 1. Marasmane skeleton and related natural products.

synthetic challenge for organic chemists, the antifeedant,³ antifungal, antibacterial,⁴ and other bioactivities of these secondary metabolites are also of interest to medicinal chemists.⁵ Over the years, Heathcock,⁶ Wilson,⁷ Groot,⁸ Woodward,⁹ and others have demonstrated a variety of methods to synthesize members of the marasmane family of natural products.¹⁰ Within the marasmane family, isovelleral caught our attention with its densely functionalized tricyclic ring structure, in which the five-membered ring and cyclopropane ring are fused to a cyclohexene core at adjacent carbons and a dialdehyde group is featured. Isovelleral was also identified to be antibiotic and mutagenic.^{5a,11} In previously reported syntheses of isovelleral and its derivatives,^{6,12} multiple steps were needed to assemble the fused-5,6,3-tricyclic core structure. We envisioned that a short and functional group compatible construction of the isovelleral skeleton could be potentially important for evaluation of bioactivities of this family of compounds.

Photochemical rearrangement of bicyclo[2.2.2] octenones has been a fruitful area in natural product synthesis; namely, the oxa-di- π -methane rearrangement of bicyclo[2.2.2] octenones has been utilized in the synthesis of a number of complex molecules.¹³ Pioneered by Yates and Stevens in the early 1980s,¹⁴ Singh,¹⁵ Banwell,¹⁶ Liao,¹⁷ and other groups have successfully employed the oxa-di- π -methane (ODPM) rearrangement of bicyclo[2.2.2] octenones in syntheses of a great diversity of natural products.¹⁸ Additionally, the photoinduced 1,3-acyl migration of bicyclo[2.2.2] octenones has also been demonstrated as an effective method in natural product synthesis.^{15a,19} As shown in Scheme 1, it has been reported

Scheme 1. Photochemical Rearrangement of Bicyclo[2.2.2]octenones

that, in some cases of the 1,3-acyl migration pathway, a secondary product was found that resulted from an additional decarbonylation.^{14b,16g,17b,20} With the structural resemblance of this secondary product to marasmane's skeleton, we anticipated that this photoinduced decarbonylative 1,3-migration (PIDM) of bicyclo[2.2.2]octenones could be an effective synthetic pathway for isovelleral and related compounds. We herein

Received:September 11, 2015Published:October 16, 2015

Table 1. Diels-Alder Reaction of 2a-u with 3, N-Phenylmaleimide

	R ⁴ \ R ³¹	R ⁵ OMe	$\begin{array}{c} \text{DAIB}^{1} \\ \text{MeOH} \end{array} \begin{array}{c} R^{4} \\ R^{3} \\ R^{2} \end{array}$	OMe OMe O sol	$\begin{array}{c} Ph & & \\ N & O & Ph \\ \hline 3 \\ \hline vent \\ flux & R^3 \\ R^4 \\ \end{array}$	R ⁵ OMe OMe	
		1a∼u	MOB 2	⊿ a~u	6a	i-u	
Diels-Ald			er Product		Due du et		Yield ^a
Entry	\mathbb{R}^2	R ³	\mathbb{R}^4	\mathbb{R}^5	Product	Solvent	(%)
1	Н	Н	Н	Н	6a	Mesitylene	92 ^b
2	Н	Н	CH ₃	Н	6b	Toluene	68
3	CH_3	Н	Н	Н	6c	MeOH	74
4	Н	CH_3	Н	Н	6d	Mesitylene	87 ^b
5	Н	Н	Н	CH_3	6e	Toluene	68
6	-#< <u>`</u> X	Н	Н	Н	6f	MeOH	72°
7	Н	-}~	Н	Н	6g	MeOH	70 ^c
8	Н	Н	- ! <^_X	Н	6h	Toluene	72
9	Н	CO ₂ Me	Н	Н	6i	MeOH	88
10	Н	Н	CO ₂ Me	Н	6ј	MeOH	74°
11	OMe	Н	CO ₂ Me	Н	6k	MeOH	80 ^c
12	Н	Н	Acetyl	Н	61	MeOH	55
13	OMe	Н	Н	Н	6m	MeOH	62
14	Н	Н	Н	OMe	6n	Toluene	88
15	Н	Н	CN	Н	60	MeOH	25
16	Н	Н	TMS	Н	6р	MeOH	74
17	Н	Н	allyl	Н	6q	MeOH	84
18	OMe	Н	- <u>+</u>	Н	6r	Toluene	72
19	OMe	Н	کر CO ₂ Me	Н	6s	MeOH	37
20	Н	tBu	Н	Н	6t	MeOH	51
21	Н	Н	tBu	Н	6и	MeOH	60

^aDAIB: (diacetoxy)iodobenzene. ^bReaction done by using dimer of MOB in retro-Diels-Alder reaction with 3. ^cReaction at rt.

report a rapid synthesis of functionalized marasmane anolgues by PIDM of bicyclo[2.2.2]octenones.

RESULTS

In order to construct the bicyclo[2.2.2] octenone starting materials with diverse functionalities, we took advantage of the Diels–Alder (D-A) reaction chemistry of masked-*o*-benzoquinone (MOB) developed by Liao and Quideau.²¹ Using readily available 2-methoxyphenols, with an oxidative dearomatization using hypervalent iodine reagent ($PhI(OAc)_2$) in MeOH, MOBs were formed for the subsequent D-A reaction. We selected three dienophiles: *N*-phenylmaleimide (**3**) for its high reactivity allowing for the generation of a wide variety of D-A adducts, and 2,2-dimethylcyclopent-4-ene-1,3-

dione (4) and cyclopentadiene (5) for their all-carbon ring structures that resemble the five-membered ring in marasmane. The results of the D-A reaction of MOB with 3 are shown in Table 1.

As shown in Table 1, yields of D-A reaction of MOBs 2a-2u with 3 range from 25% to 92%. It should be noted that, because of the rapid self-dimerization of some MOBs, the generation of **6a** and **6d** (entries 1 and 4, Table 1) were carried out by the cycloaddition using the dimer of the corresponding MOB and dienophile, 3, in a retro-D-A/D-A reaction sequence.²² In most examples, the product bicyclo[2.2.2]octenones (**6**) were isolated in moderate yield. To further expand the diversity of functionality in our photorearrangement precursors, we hydrolyzed **6g** and **6h** to form **6v** and **6w**. The aldehyde moieties

Scheme 2. Syntheses of 6v, 6w, 6x, and 6y

were found to be important for the bioactivities of isovelleral and its analogous natural products.^{5a} Thus, we wanted to inspect the necessity of aldehyde protection during the photorearrangement. To examine the compatibility of conjugate extension at olefinic position 6 in the photolysis, we also synthesized vinylated **6x** and **6y** from **6v** and **6w** by Wittig reaction (Scheme 2). This wide variety of substituents on the bicyclo[2.2.2]-core structure is useful for later examination of substitution effects on the photochemical reaction.

We next examined the photoinduced rearrangement of **6**. As shown in Table 2, parent compound **6a** was selected as the

Table 2. Optimization of Photoinduced Decarbonylative 1,3-Migration of 6a

 \sim

(N N N N N N N N N N N N N N N N N N N	O OMe OMe	hv (306 nm, <i>Concentration)</i> solvent, 3 h	ao Me N N N N N N
	entry	solvent	concentration (mg/mL)	isolated yield (%)
	1	acetone	1	26
	2	benzene	1	85
	3	methanol	1	83
	4	ACN	1	85
	5	ACN	0.5	89
	6	ACN	2	78
	7	ACN	3	76

initial substrate. We were pleased to find that, using benzene or acetonitrile as solvent, compound 6a was transformed into the desired 7a as the sole detectable product after 3 h irradiation with a broad-band UV light centered at 306 nm. Product from

the competing oxa-di- π -methane rearrangement was not observed. In addition, we were not able to detect the product from 1,3-acyl migration of **6a**, neither at partial conversion nor upon total consumption of starting material. This efficient decarbonylation process could be explained by the dimethyl ketal group adjacent to the carbonyl group: the decarbonylation of biradical-I (resulting from Norrish type I cleavage) would be favored due to formation of the more stable dimethoxy radical terminus of biradical-II, thus facilitating the sequential extrusion of CO and recombination of the biradical species to form product **7a** (Scheme 3). As an optimized condition for the irradiation of other substrates, acetonitrile was selected as solvent, with a concentration of 1 mg/mL (selected for economical reasons, although 0.5 mg/mL resulted in slightly higher yields).

We then applied the optimized conditions for the photolysis of 6a-y. The result of cases where decarbonylated 1,3-migrated products 7 were successfully obtained are shown in Table 3. The structures of photoreaction products 7 were established by ¹H, ¹³C, DEPT NMR, and HRMS. As shown in Figure 2, the stereochemistry of photoproduct 7 was confirmed by X-ray crystallography and NOE experiments, using compound 7d as a representative example. As desired, the five-membered ring from phthalimide is *cis*-fused to the cyclohexene, and is *trans* to the neighboring cyclopropane ring. In all cases, no product from 1,3-acyl migration without decarbonylation was found. Substrates 6 with alkyl groups at olefinic and bridgehead positions resulted in 69-99% isolated yield of the corresponding PIDM product 7 (entries 1-4, 14, and 15, Table 3). It should be noted that the tert-butyl group shows no retardation of the rearrangement, even in the generation of 7u (entry 15, Table 3), in which three tetrasubstituted carbon centers (t-Bu, and two of the carbons on the cyclopropane ring) were formed in close proximity. Starting materials with six-membered ring

Scheme 3. Proposed Reaction Pathway for the Generation of 7a from 6a

		$ \begin{array}{c} 0\\ N\\ R^{5}\\ R^{3}\\ R^{2}\\ 0 \end{array} $	οMe AC OMe AC	ım, 1 mg/mL) N, time	MeO R ⁴ R ³ R ²		
	6				7	Isolated Viold	
	2	Substituents		,	Product	Time (hr)	Isolated Tield
Entry	\mathbf{R}^2	Rš	R⁴	R°		(111)	(%)
1	Н	Н	CH ₃	Н	7b	5	90
2	CH_3	Н	Н	Н	7c	3	77
3	Н	CH ₃	Н	Н	7d	3	69
4	Н	Н	Н	CH_3	7e	3	92
5	$- \approx $	Н	Н	Н	7f	5	52
6	Н	-#<	Н	Н	7g	5	75
7	Н	Н	-\$-\$	Н	7h	5	90
8	Н	CO ₂ Me	Н	Н	7i	3	69
9	OMe	Н	Н	Н	7m	3	86
10	Н	Н	Н	OMe	7n	3	90
11	Н	Н	TMS	Н	7p	3	99
12	Н	Н	allyl	Н	7q	3	90
13	OMe	Н	$- \frac{1}{2} \left(\frac{1}{2} \right) $	Н	7 r	3	49
14	Н	tBu	Н	Н	7t	3	87
15	Н	Н	tBu	Н	7u	3	85
16	Н	СНО	Н	Н	7v	4	86
17	Н	vinyl	Н	Н	7x	3	33
18	Н	Н	vinyl	Н	7 y	4	87

Figure 2. NOE correlations of 7d.

acetals at \mathbb{R}^2 , \mathbb{R}^3 , or \mathbb{R}^4 showed moderate yields of 75–90% in the photoreaction. (entries 5–7, Table 3). Substrate **6** with a methoxy group installed at the bridgehead positions gave the corresponding products in high yield (entries 9 and 10, Table 3), whereas 7r was isolated in 49% yield. The PIDM products with trimethylsilyl, allyl, or vinyl substituents at \mathbb{R}^4 were also isolated in 87–99% yield from their photoprecursors. Substrates with electron-withdrawing CO₂Me or formyl groups at \mathbb{R}^3 showed moderate reactivity (entries 8 and 16, Table 3); however, product 7x with a vinyl group at the same position was isolated in only 33%.

During the photolysis of bicyclooctenones **6**, examples of incompatibility of the substitution pattern on the starting compound to the desired PIDM were also found. In cases where an electron-withdrawing group (EWG) is installed at the R⁴ position, either the oxa-di- π -methane rearrangement is the preferred photoreaction pathway or complex mixtures were produced. As shown in Scheme 4, acetyl and formyl groups at R⁴ (**6I** and **6w**) lead to the formation of ODPM products (**8I** and **8w**, respectively) in optimized conditions for the desired PIDM reaction. When R⁴ = CO₂Me, or CN (**6j**, **6k**, and **6o**), or is a conjugated elongation of an ester (**6s**), inseparable mixtures were found during the photolysis. This observation is in accordance with a previous report, where EWG at R⁴ governed the photoreaction pathway and yielded primarily ODPM products.^{17b}

As the intended PIDM reaction was successful for a wide variety of bicyclo[2.2.2] octenones 6, we next investigated examples where the embedded five-membered ring is

Article

Scheme 4. Photolysis of 6j-l, 6o, 6s, and 6w

Table 4. Diels-Alder Reactions of MOBs with 4 and 5

^aDiels-Alder reaction carried out in refluxing toluene. ^bReaction done by using dimer of MOB in retro-Diels-Alder reaction at 220 °C in mesitylene.

constructed with an all-carbon unit, as in the skeleton of marasmane (Figure 1). Substrates 4 (2,2-dimethylcyclopent-4ene-1,3-dione) and 5 (cyclopentadiene) were selected as dienophiles for the construction of bicyclo[2.2.2]octenones with all-carbon frameworks via Diels—Alders reaction. The geminal dimethyls on 9 or the extra olefin on 10 would provide synthetic handles to facilitate later conversion of the cyclopentane ring to mimic the natural product skeleton if needed.

Table 5. Photolysis of Compounds 9 and 10

		0 R ⁴ R ³ R ² 9	5 ΟΜe ΟΜe Ο Δ	06 nm), 0.5 mg/mL	$ \begin{array}{c} $		
				ACN, 1 h	$ \begin{array}{c} \text{MeO} & \mathbb{R}^5 \\ \mathbb{R}^4 & \mathbb{R}^5 \\ \mathbb{R}^3 & \mathbb{R}^2 \\ \mathbb{R}^2 \\ 12 \end{array} $		
Entry	R ²	Substituents R ³	on 6 and 7 R ⁴	R ⁵	Starting material	Product	Isolated Yield (%)
1	Н	Н	Н	Н	9a	11a	50
1	Н	Н	CH_3	Н	9b	11b	40
2	CH_3	Н	Н	Н	9c	11c	40
3	Н	CH ₃	Н	Н	9d	11d	80
4	Н	Н	Н	CH ₃	9e	11e	39
5	-\$<	Н	Н	Н	9f	11f	trace
7	Н	Н	-#<^_X	Н	9g	11g	43
10	Н	Н	H	OMe	9h	11h	44
11	Н	-}~	Н	Н	10a	12a	61
12	Н	Н	-}<^_X	Н	10b	12b	95

The result of D-A reactions of 4 and 5 with selected MOBs is shown in Table 4. The structures of the Diels–Alder adducts were identified by ¹H and ¹³C NMR, and HRMS.²³ Comparing to 3 in the synthesis of compounds 6, 4 was found to be less reactive in the cycloaddition, as a retro-Diels–Alder procedure was required to obtain the corresponding cycloadducts 9 (Table 3, entries 1, 3–6, and 9). Isolated yields of bicyclo[2.2.2]octeneones 9 were lower comparing to 6. In the case of \mathbb{R}^3 = acetal, 9g was not found in the reaction mixture. In this series of photoreaction precursors, our intention was to examine the application of the PIDM strategy in the synthesis of isovelleral derivatives; thus, we focused on examples of acetal (protected formyl group) substituted compounds. In the case of using 5 as dienophile, 10a and 10b were obtained in 53% and 75% yields, respectively.

We then applied our optimized PIDM conditions to cycloadducts 9 and 10, to inspect whether their reactivity is similar to 6. In preliminary results, products 11 from the photoreaction of 9 were not stable under the conditions of the photolysis process and were isolated in <10% yield. Consequently, we lowered the concentration of the reactant and shortened the reaction time to 1 h to reduce the decomposition of 11 during photolysis. As shown in Table 5, a series of products 11 were obtained from the PIDM reaction of the corresponding starting material 9 in 39–80% yield. Unfortunately, 9f resulted in a complex mixture with only trace amounts of desired product detected in the ¹H NMR of the crude product mixture. In most cases, reaction yields of 11 were found to be lower when comparing to the photoreactions of 6

bearing the same substitution pattern. This phenomenon is presumably due to the β , γ -unsaturated ketone moiety in 11, which could lead to the aforementioned decomposition of 11 during photolysis. In comparison, 10a and 10b underwent the PIDM reaction to give 61% and 95% yields of 12a and 12b, respectively, which is comparable to the yields of counterparts 7g and 7h in Table 3.

DISCUSSION

From the result of photoinduced decarbonylative 1,3-migration of 6 to form 7 (Table 3), most substitutions at the olefin (R^3) and R^4) and bridgehead (R^2 and R^5) positions show high compatibility during the photoreaction. Only electron-withdrawing groups at R⁴ were found to be incompatible with the desired PIDM process and led to ODPM reaction or complex reaction mixtures. A possible explanation of this observed phenomenon could be that, during the photolysis, the conjugated carbonyl group at R⁴ served as a sensitizer and enabled a self-sensitized triplet process, and led to ODPM reaction as the major pathway or a complex mixture of products from competing reactions. The extra carbonyl groups on the five-membered ring of bicyclo[2.2.2]octenones 9 were the likely reason for lower yields of 11. The α -geminal dimethyl ketal facilitated the decarbonylation process by stabilizing the radical terminus of biradical-II (Scheme 3), as in all cases of photolysis of 6, 9 and 10 1,3-acyl migration was not found.

The Journal of Organic Chemistry

CONCLUSION

In summary, we have disclosed a facile construction of functionalized, marasmane-like skeletons via photochemical rearrangement of bicyclo[2.2.2]octenone precursors, which could easily be obtained by the sequential oxidative dearomatization and cycloaddition of readily available 2-methoxyphenols. Functional group compatibility with respect to the photoreaction precursor was high, and the fused-5,6,3-tricyclic ring structures could be obtained in 33–99% yields. We anticipate that this PIDM strategy may be useful in the syntheses of natural products and analogues of the bioactive isovelleral skeleton.

EXPERIMENTAL SECTION

General Procedure of Diels–Alder Reaction of MOBs Using MeOH as Solvent: (Synthesis of 6c as Example). To a solution of 1c (0.414 g, 3.00 mmol) and 3 (1.04 g, 6.00 mmol) in 5 mL of MeOH at refluxing temperature was slowly added a solution of diacetoxyiodobenzene (1.16 g, 3.60 mmol) in 10 mL of MeOH over 8 h using a syringe pump. The reaction was stirred at refluxing temperature for 4 h and then cooled to rt. 50 mL of saturated NaHCO₃(aq) was added to the reaction mixture and then extracted with CH₂Cl₂. The organic phase was collected and dried with anhydrous MgSO₄, and solvent was removed using a rotavap. The crude was then recrystallized in ether to obtain 755 mg of 6c as a white powder in 74% yield.

General Procedure of Diels–Alder Reaction of MOBs Using Toluene as Solvent: (Synthesis of 6b as Example). To a solution of 1b (1.39 g, 10.0 mmol) in 25 mL of MeOH at 0 °C was added diacetoxyiodobenzene (3.86 g, 12.0 mmol). The reaction mixture was then warmed to rt and stirred for 30 min. 10 mL of saturated NaHCO₃(aq) was then added to the reaction mixture and extracted with CH₂Cl₂. The organic phase was collected and dried with anhydrous MgSO₄, and solvent was exchanged to toluene (~50 mL) using a rotavap. 3 (2.60 g, 15.0 mmol) was added to the toluene solution and stirred at refluxing temperature for 12 h. The crude was then concentrated. 6b (2.34 g, $R_f = 0.11$, EA:Hexanes = 1:3) was isolated using column chromatography of the reaction crude in 68% yield as a white solid.

General Procedure of Diels–Alder Reaction of MOBs Using Mesitylene as Solvent: (Synthesis of 6a as Example). A solution of the dimer of MOB 2a (0.0770 g, 0.250 mmol), 3 (0.433 g, 2.50 mmol), and BHT (5.50 mg, 0.0250 mmol) in 1 mL of degassed (freeze–pump–thaw) mesitylene in a sealed tube was heated to 220 °C for 3 h. Mesitylene was then removed by kugelrohr. 6a (0.151 g, R_f = 0.10, EA:Hexanes = 1:4) was isolated using column chromatography of the reaction crude in 92% yield as a white solid.

Spectral Data of **6a**. White solid, 151 mg, 92% yield, mp 229.7–232.3 °C. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.37–7.49 (m, 3H), 7.16–7.20 (m, 2H), 6.44 (ddd, *J* = 1.4, 6.4, 8.1 Hz, 1H), 6.27 (ddd, *J* = 1.3, 6.2, 8.1 Hz, 1H), 3.82 (ddd, *J* = 1.6, 3.3, 6.4 Hz, 1H), 3.76 (ddd, *J* = 1.4, 3.1, 6.2 Hz, 1H), 3.58 (dd, *J* = 3.3, 8.4 Hz, 1 H), 3.42 (s, 3H), 3.41 (dd, *J* = 3.0 and 8.4 Hz, 1H), 3.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 198.4 (C), 176.3 (C), 174.9 (C), 133.1 (CH), 131.5 (C), 129.2 (2 × CH), 129.0 (CH), 127.1 (CH), 126.3 (2 × CH), 93.0 (CH). HMRS (ESI-TOF) calcd for C₁₈H₁₇NO₅Na [M + Na]⁺, 350.0999. Found, 350.1012. IR (neat, cm⁻¹): 2941, 2841, 1778, 1744, 1711, 1597, 1545, 1498, 1456, 1386, 1188, 1140, 1092, 1057, 752, 733, 692.

Spectral Data of 6b. White solid, 2.34 g, 68% yield, mp 155.4–159.7 °C. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.50–7.37 (m, 3H), 7.17–7.13 (m, 2H), 5.84 (dd, *J* = 4.4, 1.7 Hz, 1H), 3.67–3.62 (m, 2H), 3.54 (dd, *J* = 8.4, 3.5 Hz, 1H), 3.40 (s, 6H), 3.37 (d, *J* = 3.0 Hz, 1H), 1.93 (d, *J* = 1.6, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 198.5 (C), 176.2 (C), 175.1 (C), 144.1 (C), 131.5 (C), 129.2 (CH), 128.8 (CH), 126.2 (CH), 118.1 (CH), 93.1 (C), 50.7 (CH₃), 50.1 (CH₃), 48.7 (CH), 45.3 (CH), 41.0 (CH), 39.9 (CH), 21.8 (CH₃); HRMS (ESI-TOF) calcd for C₁₉H₁₉NO₅Na [M + Na]⁺, 364.1155.

Found, 364.1173. IR (neat, cm⁻¹): 2945, 1741, 1713, 1597, 1498, 1441, 1384, 1187, 1086, 1061, 908, 757, 691.

Spectral Data of 6c. White solid, 755 mg, 74% yield, mp 178.1– 181.8 °C. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.36–7.50 (m, 3 H), 7.17–7.21 (m, 2 H), 6.40 (dd, *J* = 6.5, 8.2 Hz, 1H), 5.95 (ddd, *J* = 0.7, 1.5, 8.2 Hz, 1H), 3.79 (ddd, *J* = 1.6, 3.3, 6.5 Hz, 1H), 3.60 (dd, *J* = 3.2, 8.4 Hz, 1H), 3.43 (s, 3H), 3.37 (s, 3H), 3.01 (dd, *J* = 0.6, 8.4 Hz, 1H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ):200.1 (C), 176.2 (C), 174.2 (C), 132.6 (CH), 131.5 (C), 132.0 (CH), 129.1 (2 × CH), 128.8 (CH), 126.3 (2 × CH), 92.6 (C), 51.0 (C), 50.2 (CH₃), 50.1 (CH₃), 44.6 (CH), 41.4 (CH), 40.0 (CH), 14.7 (CH₃); HMRS (ESI-TOF) calcd for C₁₉H₂₀NO₅ [M + H]⁺, 342.1336. Found, 342.1342. IR (neat, cm⁻¹): 2974, 2943, 2834, 1779, 1735, 1712, 1594, 1497, 1455, 1385, 1282, 1225, 1186, 1155, 1037, 752, 731, 692.

Spectral Data of 6d. White solid, 148 mg, 87% yield, mp 113.3–114.3 °C. ¹H NMR (300 MHz, CDCl₃, 24 °C, δ): 7.37–7.50 (m, 3 H), 7.13–7.18 (m, 2 H), 6.03 (dt, *J* = 1.7 and 6.5 Hz, 1H), 3.71 (dd, *J* = 3.2, 6.5 Hz, 1H), 3.58 (dd, *J* = 1.7, 3.1 Hz, 1H), 3.57 (dd, *J* = 3.3, 8.4 Hz, 1H), 3.42 (dd, *J* = 3.1, 8.2 Hz, 1H), 3.40 (s, 3H), 3.36 (s, 3H), 1.88 (d, *J* = 1.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 198.2 (C), 176.5 (C), 174.9 (C), 137.2 (C), 131.5 (C), 129.2 (2 × CH), 128.9 (CH), 126.1 (2 × CH), 124.5 (CH), 93.2 (C), 53.8 (CH), 50.3 (CH₃), 50.0 (CH₃), 40.6 (CH), 40.5 (CH), 40.4 (CH), 20.7 (CH₃); HMRS (ESI-TOF) calcd for C₁₉H₂₀NO₅ [M + H]⁺, 342.1336. Found, 342.1329. IR (neat, cm⁻¹): 2971, 2935, 2835, 1743, 1712, 1597, 1497, 1384, 1190, 1138, 1095, 1059, 968, 753, 685.

Spectral Data of 6e. White solid, 699 mg, 68% yield, mp 174.6–176.9 °C. ¹H NMR (300 MHz, CDCl₃, 24 °C, δ): 7.36–7.48 (m, 3 H), 7.16–7.19 (m, 2 H), 6.21 (dd, *J* = 1.7, 8.2 Hz, 1H), 6.17 (dd, *J* = 5.9, 8.2 Hz, 1H), 3.76 (ddd, *J* = 1.7, 2.5, 5.9 Hz, 1H), 3.46 (d, *J* = 8.2 Hz, 1H), 3.44 (s, 3H), 3.42 (dd, *J* = 2.5, 8.3 Hz, 1H), 3.33 (s, 3H), 1.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 198.0 (C), 175.8 (C), 174.8 (C), 140.7 (CH), 131.5 (C), 129.0 (2 × CH), 128.7 (CH), 126.3 (2 × CH), 124.1 (CH), 94.6 (C), 54.7 (CH), 51.9 (CH₃), 49.0 (CH₃), 48.9 (C), 45.0 (CH), 41.5 (CH), 14.8 (CH₃); HMRS (ESI-TOF) calcd for C₁₉H₂₀NO₅ [M + H]⁺, 342.1336. Found, 342.1351. IR (neat, cm⁻¹): 2988, 2945, 2837, 1774, 1736, 1711, 1596, 1497, 1457, 1383, 1288, 1218, 1186, 1103, 1000, 898, 799, 751, 734, 692, 620.

Spectral Data of 6f. Yellowish solid, 317 mg, 72% yield, mp 200.8–203.0 °C. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.49–7.36 (m, 3H), 7.20–7.16 (m, 2H), 6.42 (dd, *J* = 8.3, 6.4 Hz, 1H), 6.20 (dd, *J* = 8.3, 1.3 Hz, 1H), 5.17 (s, 1H), 3.79–3.72 (m, 2H), 3.70 (dd, *J* = 10.9, 2.7 Hz, 1H), 3.68–3.65 (m, 1H), 3.58 (dd, *J* = 8.6, 3.3 Hz, 1H), 3.6–3.5 (m, 1H), 3.49–3.44 (m, 1H), 3.45 (s, 3H), 3.34 (s 3H), 1.42 (s, 3H), 0.73 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 195.0 (C), 176.2 (C), 173.8 (C), 131.5 (CH), 129.1 (CH), 128.8 (CH), 126.4 (CH), 99.6 (CH), 92.6 (C), 78.0 (CH₃), 77.6 (CH₃), 56.0 (C), 50.3 (CH₃), 50.2 (CH₃), 41.2 (CH), 40.7 (CH), 40.3 (CH), 30.6 (C), 22.9 (CH₃), 21.7 (CH₃); HRMS (ESI-TOF) calcd for C₂₄H₂₇NO₇Na [M + Na]⁺, 464.1680. Found, 464.1701. IR (neat, cm⁻¹): 2952, 2850, 1750, 1714, 1498, 1385, 1190, 1108, 1042, 753, 732, 691.

Spectral Data of **6***g*. White solid, 932 mg, 70% yield, mp 132.1–133.2 °C. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.45–7.34 (m, 3H), 7.25–7.21 (m, 2H), 6.45–6.40 (d, *J* = 6.6 Hz, 1H), 4.80 (s, 1H), 3.95 (dd, *J* = 2.7, 1.8 Hz, 1H), 3.84 (dd, *J* = 3.7, 6.7 Hz, 1H), 3.67–3.54 (m, 3H), 3.45 (d, *J* = 3.3 Hz, 1H), 3.42 (d, *J* = 3.4 Hz, 1H), 3.41 (s, 3H), 3.38 (d, *J* = 2.9 Hz, 1H), 3.36 (s, 3H), 1.16 (s, 3H), 0.72 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 197.8 (C), 176.2 (C), 174.0 (C), 136.9 (C), 131.7 (C), 128.9 (CH), 128.6 (CH), 128.3 (CH), 126.5 (CH), 98.4 (CH), 93.0 (C), 77.1 (CH₂), 76.9 (CH₂), 50.3 (CH₃), 48.8 (CH), 40.8 (CH), 40.4 (CH), 39.9 (CH), 30.1 (C), 22.9 (CH₃), 21.7 (CH₃); HRMS (ESI-TOF) calcd for C₂₄H₂₇NO₇Na [M + Na]⁺, 464.1679. Found, 464.1700. IR (neat, cm⁻¹): 2954, 2853, 1746, 1715, 1598, 1499, 1456, 1385, 1190, 1136, 1098, 1057, 1030, 987, 751, 692.

Spectral Data of 6h. White solid, 976 mg, 72% yield, mp 222.7–225.0 °C. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.46–7.34 (m, 3H), 7.25–7.20 (m, 2H), 6.29 (d, *J* = 6.4 Hz, 1H), 4.90 (d, *J* = 1.0 Hz, 1H), 3.97 (dd, *J* = 3.0, 2.1 Hz, 1H), 3.78 (dd, *J* = 6.5, 3.2 Hz, 1H), 3.67 (dd, *J* = 11.1, 2.7 Hz, 1H), 3.63 (m, 1H), 3.58 (dd, *J* = 8.4, 3.1 Hz, 1H),

The Journal of Organic Chemistry

3.50 (s, 1H), 3.48 (s, 1H), 3.43–3.39 (m, 1H), 3.41 (s, 3H), 3.37 (s, 3H), 1.17 (s, 3H), 0.73 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 198.6 (C), 175.4 (C), 174.9 (C), 143.2 (C), 131.8 (C), 129.0 (CH), 128.7 (CH), 126.6 (CH), 122.5 (CH), 98.8 (CH), 93.1 (C), 77.3 (CH₂), 77.0 (CH₂), 50.3 (CH₃), 50.2 (CH₃), 48.2 (CH), 41.4 (CH), 41.1 (CH), 39.9 (CH), 30.1 (C), 22.9 (CH₃), 21.8 (CH₃); HRMS (ESI-TOF) calcd for C₂₄H₂₇NO₇Na [M + Na]⁺, 464.1680. Found, 464.1705. IR (neat, cm⁻¹): 2951, 2851, 1741, 1716, 1499, 1386, 1191, 1103, 1029, 751.

Spectral Data of 6i. White solid, 1690 mg, 88% yield, mp 195.3–201.9 °C. ¹H NMR (300 MHz, CDCl₃, 24 °C, δ): 7.36–7.47 (m, 3 H), 7.34 (dd, *J* = 1.7, 6.7 Hz, 1H), 7.07–7.12 (m, 2 H), 4.35 (dd, *J* = 1.8, 3.0 Hz, 1H), 4.00 (dd, *J* = 3.3, 6.8 Hz, 1H), 3.60 (dd, *J* = 3.2, 8.5 Hz, 1H), 3.49 (dd, *J* = 3.1, 8.5 Hz, 1H), 3.44 (s, 3H), 3.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 197.1 (C), 175.4 (C), 173.7 (C), 162.6 (C), 140.9 (CH), 131.2 (C), 130.8 (C), 129.1 (2 × CH), 128.8 (CH), 126.1 (2 × CH), 92.3 (C), 52.4 (CH₃), 50.4 (CH₃), 50.1 (CH₃), 48.0 (CH), 41.4 (CH), 40.5 (CH), 39.5 (CH); HMRS (ESI-TOF) calcd for C₂₀H₂₀NO₇ [M + H]⁺, 386.1234. Found, 386.1248. IR (neat, cm⁻¹): 2948, 2837, 1746, 1717, 1633, 1601, 1499, 1438, 1385, 1273, 1225, 1188, 1133, 1098, 1059, 995, 794, 748, 692.

Spectral Data of 6j. White solid, 786 mg, 74% yield, mp 222.3–227.6 °C. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.50–7.33 (m, 3H), 7.18 (dd, *J* = 6.4, 2.1 Hz, 1H), 7.13–7.09 (m, 2H), 4.44 (dd, *J* = 3.3, 2.1 Hz, 1H), 3.94 (dd, *J* = 6.5, 3.0 Hz, 1H), 3.01 (s, 3H), 3.69 (dd, *J* = 8.5, 3.5, Hz, 1H), 3.49 (dd, *J* = 8.4, 2.9, Hz, 1H), 3.44 (s, 3H), 3.38 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 197.1 (C), 175.2 (C), 174.1 (C), 163.0 (C), 136.4 (C), 135.0 (CH), 131.3 (C), 129.2 (CH), 129.0 (CH), 126.2 (CH), 92.3 (C), 52.5 (CH₃), 50.5 (CH₃), 49.6 (CH₃), 40.7 (CH), 40.6 (CH), 39.9 (CH); HRMS (ESI-TOF) calcd for C₂₀H₁₉NO₇Na [M + Na]⁺, 408.1054. Found, 408.1069. IR (neat, cm⁻¹): 2951, 2840, 1714, 1498, 1438, 1384, 1253, 1189, 1129, 1081, 747, 693.

Spectral Data of 6k. White solid, 1000 mg, 80% yield, mp 187.7– 193.8 °C. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.47–7.35 (m, 3H), 7.16–7.09 (m, 3H), 4.39 (dd, *J* = 3.4, 2.2, Hz, 1H), 3.80 (s, 3H), 3.77 (s, 3H), 3.72 (dd, *J* = 8.5, 3.4 Hz, 1H), 3.62 (d, *J* = 8.6 Hz, 1H), 3.45 (s, 3H), 3.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): . 196.4 (C), 174.7 (C), 171.4 (C), 162.5 (C), 137.6 (CH), 134.0 (C), 131.2 (C), 129.0 (CH), 128.8 (CH), 126.1 (CH), 92.1 (C), 84.8 (C), 54.1 (CH₃), 52.5 (CH₃), 50.3 (CH₃ × 2), 41.0 (CH), 40.7 (CH), 39.2 (CH); HRMS (ESI-TOF) calcd for C₂₁H₂₁NO₈Na [M + Na]⁺, 438.1159. Found, 438.1173. IR (neat, cm⁻¹): 2951, 2841, 1715, 1672, 1598, 1499, 1436, 1386, 1246, 1194, 1123, 1092, 1030, 754, 693.

Spectral Data of 6l. White solid, 610 mg, 55% yield, mp 215.2–221.1 °C. ¹H NMR (300 MHz, CDCl₃, 24 °C, δ): 7.5–7.3 (m, 3H), 7.14–7.07 (m, 2H), 7.05 (dd, *J* = 6.6, 1.7 Hz, 1H), 4.59–4.54 (m, 1H), 3.94 (dd, *J* = 6.5, 3.0 Hz, 1H), 3.68 (dd, *J* = 8.5, 3.3 Hz, 1H), 3.51 (dd, *J* = 8.6, 2.9 Hz, 1H), 3.44 (s, 3H), 3.33 (s, 3H), 2.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 197.4 (C), 192.8 (C), 175.0 (C), 174.2 (C), 144.3 (C), 134.1 (CH), 131.2 (C), 129.1 (CH), 129.0 (CH), 125.9 (CH), 92.4 (C), 50.6 (CH₃), 49.6 (CH), 40.8 (CH), 39.6 (CH), 38.9 (CH), 24.9 (CH₃); HRMS (ESI-TOF) calcd for C₂₀H₁₉NO₆Na [M + Na]⁺, 392.1104. Found, 392.1117. IR (neat, cm⁻¹): 2950, 1743, 1712, 1598, 1499, 1443, 1386, 1198, 1126, 1089, 758, 693.

Spectral Data of 6m. White solid, 661 mg, 62% yield, mp 177.1– 184.7 °C. ¹H NMR (300 MHz, CDCl₃, 24 °C, δ): 7.35–7.49 (m, 3 H), 7.18–7.23 (m, 2 H), 6.34 (dd, *J* = 6.6, 8.6 Hz, 1H), 6.21 (ddd, *J* = 0.7, 1.6, 8.6 Hz, 1H), 3.73–3.79 (m, 4H), 3.57–3.62 (m, 2H), 3.42 (s, 3H), 3.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 197.5 (C), 175.6 (C), 172.1 (C), 131.4 (C), 130.8 (CH), 130.3 (CH), 129.0 (2 × CH), 128.7 (CH), 126.2 (2 × CH), 92.8 (C), 83.9 (C), 53.8 (CH₃), 50.1 (CH₃), 50.1 (CH₃), 40.9 (CH), 40.7 (CH), 39.4 (CH); HMRS (ESI-TOF) calcd for C₁₉H₂₀NO₆ [M + H]⁺, 358.1285. Found, 358.1272. IR (neat, cm⁻¹): 2977, 2946, 2841, 1754, 1715, 1597, 1496, 1457, 1386, 1224, 1188, 1139, 1066, 1051, 1021, 998, 862, 751, 729, 692.

Spectral Data of 6n. White solid, 945 mg, 88% yield, mp 133.1– 136.9 °C. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.34–7.48 (m, 3 H), 7.18–7.22 (m, 2 H), 6.48 (dt, J = 1.0 and 8.6 Hz, 1H), 6.13 (dd, J = 6.4 and 8.7 Hz, 1H), 4.03 (d, J = 8.4 Hz, 1H), 3.82 (s, 3H), 3.77 (ddd, J = 1.3, 2.8, and 6.4 Hz, 1H), 3.52 (s, 3H), 3.51 (s, 3H), 3.37 (dd, J = 2.7, 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 195.5 (C), 174.2 (C), 173.6 (C), 137.3 (CH), 131 (C), 128.9 (2 × CH), 128.6 (CH), 126.2 (2 × CH), 122.2 (CH), 94.9 (C), 83.4 (C), 54.3 (CH₃), 52.7 (CH₃), 51.4 (CH₃), 47.8 (CH), 41.2 (CH), 39.6 (CH); HMRS (ESI-TOF) calcd for C₁₉H₁₉NO₆Na [M + Na]⁺, 380.1105. Found, 380.1123. IR (neat, cm⁻¹): 2948, 2840, 1779, 1743, 1714, 1597, 1498, 1456, 1385, 1189, 1138, 1115, 1069, 1022, 989, 798, 748, 729, 694, 622.

Spectral Data of 60. White solid, 895 mg, 25% yield, mp 244.3–249.1 °C. ¹H NMR (300 MHz, CDCl₃, 24 °C, δ): 7.40–7.53 (m, 3 H), 7.17–7.22 (m, 2 H), 7.03 (dd, *J* = 1.8, 6.5 Hz, 1H), 4.02 (dd, *J* = 2.1, 3.0 Hz, 1H), 3.96 (dd, *J* = 3.1, 6.5 Hz, 1H), 3.66 (dd, *J* = 3.2, 8.6 Hz, 1H), 3.52 (dd, *J* = 3.0, 8.6 Hz, 1H), 3.46 (s, 3H), 3.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 195.5 (C), 174.3 (C), 173.3 (C), 141.3 (CH), 131.0 (C), 129.4 (2 × CH), 129.3 (CH), 126.1 (2 × CH), 117.4 (C), 114.8 (C), 92.0 (C), 51.0 (CH₃), 50.5 (CH₃), 49.6 (CH), 43.9 (CH), 40.8 (CH), 39.3 (CH); HMRS (ESI-TOF) calcd for C₁₉H₁₇N₂O₅ [M + H]⁺, 353.1132. Found, 353.1138. IR (neat, cm⁻¹): 2949, 2841, 1754, 1715, 1596, 1496, 1456, 1384, 1291, 1187, 1157, 1134, 1060, 1032, 980, 927, 754, 691, 589.

Spectral Data of **6***p*. White solid, 883 mg, 74% yield, mp 201.2–203.5 °C. ¹H NMR (300 MHz, CDCl₃, 24 °C, δ): 7.35–7.50 (m, 3 H), 7.13–7.17 (m, 2 H), 6.48 (dd, *J* = 1.0, 6.0 Hz, 1H), 3.88 (dd, *J* = 1.5, 3.3 Hz, 1H), 3.78 (dd, *J* = 3.0, 6.0 Hz, 1H), 3.53 (dd, *J* = 3.4, 8.6 Hz, 1H), 3.40 (ddd, *J* = 0.5, 3.0, 8.4 Hz, 1H), 3.40 (s, 3H), 3.36 (s, 3H), 0.10 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 198.9 (C), 176.2 (C), 175.1 (C), 150.5 (C), 133.9 (CH), 131.6 (C), 129.2 (2 × CH), 128.8 (CH), 126.2 (2 × CH), 93.1 (C), 50.8 (CH₃), 49.9 (CH₃), 49.7 (CH), 42.8 (CH), 40.6 (CH), 39.7 (CH), -2.0 (3 × CH₃); HMRS (ESI-TOF) calcd for C₂₁H₂₆NO₅Si [M + H]⁺, 400.1575. Found, 400.1597. IR (neat, cm⁻¹): 2953, 2834, 1736, 1711, 1597, 1497, 1457, 1385, 1290, 1250, 1911, 1137, 1100, 1059, 972, 834, 792, 751, 691, 622.

Spectral Data of **6***q*. White solid, 883 mg, 84% yield, mp 144.7–146.9 °C. ¹H NMR (300 MHz, CDCl₃, 24 °C, δ): 7.36–7.50 (m, 3 H), 7.11–7.18 (m, 2 H), 5.84 (dd, *J* = 1.8, 6.3 Hz, 1H), 5.74 (qt, *J* = 7.1, 10.2 Hz, 1H), 5.18–5.08 (m, 2H), 3.70 (dd, *J* = 2.9, 6.4 Hz, 1H), 3.65 (dd, *J* = 2.1, 3.3 Hz, 1H), 3.55 (dd, *J* = 3.4, 8.3 Hz, 1H), 3.36–3.45 (m, 7H), 2.98 (dd, *J* = 7.4, 17.0 Hz, 1H), 2.90 (dd, *J* = 6.7, 17.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 198.3 (C), 176.1 (C), 175.0 (C), 146.3 (C), 132.8 (CH), 131.5 (C), 129.1 (2 × CH), 128.8 (CH), 126.2 (2 × CH), 118.3 (CH₂), 117.9 (CH), 93.0 (C), 50.6 (CH₃), 50.1 (CH₃), 48.7 (CH), 44.4 (CH), 41.0 (CH), 39.9 (CH), 39.8 (CH₂); HMRS (ESI-TOF) calcd for C₂₁H₂₁NO₃Na [M + Na]⁺, 390.1312. Found, 390.1330. IR (neat, cm⁻¹): 2946, 2837, 1741, 1713, 1597, 1498, 1455, 1384, 1290, 1229, 1187, 1145, 1062, 1032, 981, 920, 750, 691.

Spectral Data of Gr. White solid, 976 mg, 72% yield, mp 156.7–165.5 °C. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.47–7.31 (s, 3H), 7.25–7.22 (s, 2H), 6.30 (s, 1H), 4.89 (s, 1H), 3.92 (m, 1H), 3.71 (s, 3H), 3.70–3.58 (m, 3H), 3.57–3.52 (m, 1H), 3.52–3.46 (m, 2H), 3.42 (3H), 3.38 (3H), 1.16 (3H), 0.73 (3H). ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 197.7 (C), 174.8 (C), 172.2 (C), 141 (C),131.8 (C), 128.9 (CH), 128.7 (CH), 126.6 (CH), 125.4 (CH), 98.4 (CH), 92.9 (C), 84.1 (C), 77.3 (CH₂), 77.1 (CH₂), 54.1 (CH₃), 50.3 (CH₃), 42.2 (CH), 40.1 (CH), 40.0 (CH), 30.1 (C), 22.9 (CH₃), 21.8 (CH₃); HRMS (ESI-TOF) calcd for C₂₅H₂₉NO₈Na [M + Na]⁺, 494.1785. Found, 494.1802. IR (neat, cm⁻¹): 2923, 2851, 1754, 1717, 1500, 1465, 1385, 1188, 1112, 1091, 1030.

Spectral Data of 6s. White solid, 328 mg, 37% yield, mp 135.0–138.5 °C. ¹H NMR (300 MHz, CDCl₃, 24 °C, δ): 7.35–7.47 (m, 3 H), 7.28 (d, *J* = 15.8 Hz, 1H), 7.08–7.14 (m, 2 H), 6.36 (d, *J* = 1.3 Hz, 1H), 6.21 (d, *J* = 15.8 Hz, 1H), 4.03 (t, *J* = 2.5 Hz, 1H), 3.65–3.72 (m, 2H), 3.45 (s, 3H), 3.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 196.4 (C), 174.8 (C), 171.7 (C), 166.6 (C), 139.4 (CH), 139.1 (C), 132.3 (CH), 131.2 (C), 129.2 (2 × CH), 129.0 (CH), 126.2 (2 × CH), 121.3 (CH), 92.8 (C), 84.7 (C), 54.1 (CH₃), 51.9 (CH₃), 51.1

 (CH_3) , 50.3 (CH_3) , 41.5 (CH), 40.5 (CH), 39.7 (CH); HMRS (ESI-TOF) calcd for $C_{23}H_{24}NO_8$ $[M + H]^+$, 442.1496. Found, 442.1504. IR (neat, cm⁻¹): 2948, 2834, 1755, 1715, 1634, 1594, 1498, 1436, 1384, 1310, 1283, 1229, 1191, 1142, 1049, 1013, 868, 751, 694.

Spectral Data of 6t. White solid, 588 mg, 51% yield, mp 204.8–208.2 °C. ¹H NMR (300 MHz, CDCl₃, 24 °C, δ): 7.36–7.49 (m, 3 H), 7.14–7.19 (m, 2 H), 6.07 (dd, *J* = 1.9, 6.7 Hz, 1H), 3.86 (dd, *J* = 1.9, 2.8 Hz, 1H), 3.75 (dd, *J* = 3.5, 6.7 Hz, 1H), 3.56 (dd, *J* = 3.5, 8.6 Hz, 1H), 3.40 (s, 3H), 3.38 (dd, *J* = 2.9, 8.6 Hz, 1H), 3.36 (s, 3H), 1.00 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 198.6 (C), 176.6 (C), 174.8 (C), 148.8 (C), 131.6 (C), 129.2 (2 × CH), 128.8 (CH), 126.2 (2 × CH), 121.6 (CH), 93.3 (C), 50.3 (CH₃), 50.2 (CH₃), 50.0 (CH), 40.6 (CH), 40.4 (CH), 39.4 (CH), 34.8 (C), 28.0 (CH₃); HMRS (ESI-TOF) calcd for C₂₂H₂₅NO₅Na [M + Na]⁺, 406.1625. Found, 406.1635. IR (neat, cm⁻¹): 2965, 1739, 1713, 1594, 1498, 1465, 1384, 1227, 1186, 1136, 1099, 1057, 980, 789, 779, 751, 692, 626.

Spectral Data of 6u. White solid, 616 mg, 60% yield, mp 205.3–208.7 °C. ¹H NMR (300 MHz, CDCl₃, 24 °C, δ): 7.35–7.50 (m, 3 H), 7.14–7.21 (m, 2 H), 5.94 (dd, *J* = 2.0, 6.6 Hz, 1H), 3.86 (t, *J* = 2.5 Hz, 1H), 3.73 (dd, *J* = 3.0, 6.6 Hz, 1H), 3.52 (dd, *J* = 3.1, 8.6 Hz, 1H), 3.41 (s, 3H), 3.35–3.40 (m, 4H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 199.5 (C), 176.1 (C), 175.2 (C), 155.7 (C), 131.5 (C), 129.2 (2 × CH), 128.8 (CH), 126.2 (2 × CH), 116.1 (CH), 93.5 (C), 51.1 (CH₃), 49.7 (CH₃), 48.0 (CH), 41.6 (CH), 41.1 (CH), 40.1 (CH), 34.7 (C), 29.2 (3 × CH₃); HMRS (ESI-TOF) calcd for C₂₂H₂₅NO₅Na [M + Na]⁺, 406.1625. Found, 406.1643. IR (neat, cm⁻¹): 2966, 1740, 1713, 1593, 1499, 1458, 1383, 1292, 1190, 1135, 1106, 1052, 1030, 980, 924, 751, 712, 691.

Spectral Data of **6v**. White solid, 27 mg, 67% yield, mp 202.5–211.7 °C. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 9.58 (s, 1H), 7.46–7.35 (m, 3H), 7.26 (dd, *J* = 1.7, 6.6 Hz, 1H), 7.10–7.06 (m, 2H), 4.38 (dd, *J* = 2.9, 1.7 Hz, 1H), 4.10 (dd, *J* = 6.6, 3.3 Hz, 1H), 3.64 (dd, *J* = 8.5, 3.3 Hz, 1H), 3.49 (dd, *J* = 8.5, 3.0 Hz, 1H), 3.45 (s, 3H), 3.35 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 196.7 (C), 186.4 (CH), 175.2 (C), 173.2 (C), 147.1 (CH), 139.3 (C), 131.0 (C), 129.2 (CH), 129.0 (CH), 125.9 (CH), 92.8 (C), 50.8 (CH₃), 50.2 (CH₃), 45.3 (CH), 41.9 (CH), 40.3 (CH), 39.9 (CH); HRMS (ESI-TOF) calcd for C₁₉H₁₇NO₆Na [M + Na]⁺, 378.0948. Found, 378.0961. IR (neat, cm⁻¹): 2952, 2927, 2655, 1737, 1713, 1694, 1598, 1496, 1455, 1392, 1276, 1203, 1155, 1062, 998, 965.

Spectral Data of 6w. White solid, 77 mg, 95% yield, mp 215.9–220.0 °C. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 9.60 (s, 1H), 7.48–7.35 (m, 3H), 7.15–7.08 (m, 3H), 4.48 (dd, *J* = 3.2, 2.0 Hz, 1H), 4.05 (dd, *J* = 6.4, 3.1 Hz, 1H), 3.70 (dd, *J* = 8.5, 3.3 Hz, 1H), 3.56 (dd, *J* = 8.6, 3.1 Hz, 1H), 3.46 (s, 3H), 3.31 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 196.6 (C), 186.8 (CH), 174.7 (C), 173.9 (C), 144.9 (C), 141.4 (CH), 129.2 (CH), 126.0 (CH), 92.4 (C), 50.6 (CH₃), 50.5 (CH₃), 50.0 (CH), 41.0 (CH), 39.3 (CH), 37.7 (CH); HRMS (ESI-TOF) calcd for C₁₉H₁₇NO₆Na [M + Na]⁺, 378.0948. Found, 378.0953. IR (neat, cm⁻¹): 2918, 2849, 1742, 1711, 1597, 1498, 1438, 1387, 1198, 1124, 1088, 754, 692.

Spectral Data of **6x**. White solid, 72 mg, 73% yield, mp 135.0–137.5 °C. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.47–7.35 (m, 3H), 7.12–7.08 (m, 2H), 6.38 (dd, *J* = 17.3, 10.9 Hz, 1H), 6.21 (d, *J* = 6.4 Hz, 1H), 5.47 (d, *J* = 17.5 Hz, 1H), 5.25 (d, *J* = 10.8 Hz, 1H), 4.10 (dd, *J* = 2.8, 1.9 Hz, 1H), 3.83 (dd, *J* = 6.7, 3.4 Hz, 1H), 3.60 (dd, *J* = 8.3, 3.3 Hz, 1H), 3.47 (dd, *J* = 8.3, 3.1 Hz, 1H), 3.43 (s, 3H), 3.37 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 198.0 (C), 176.2 (C), 174.4 (C), 137.2 (C), 132.1 (CH), 131.4 (C), 129.1 (CH), 128.8 (CH), 127.6 (CH), 126.3 (CH), 117.2 (CH₂), 93.1 (C), 50.3 (CH₃), 48.1 (CH), 41.1 (CH), 40.1 (CH), 40.3 (CH); HRMS (ESI-TOF) calcd for C₂₀H₁₉NO₅Na [M + Na]⁺, 376.1155. Found, 376.1172. IR (neat, cm⁻¹): 2949, 2854, 1741, 1713, 1498, 1457, 1384, 1244, 1189, 1136, 1096, 1058, 986, 921, 751, 692.

Spectral Data of **6***y*. White solid, 10 mg, 20% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.46–7.35 (m, 3H), 7.12–7.07 (m, 2H), 6.38 (dd, *J* = 10.9, 17.5 Hz, 1H), 6.21 (d, *J* = 6.2 Hz, 1H), 5.47 (d, *J* = 17.5 Hz, 1H), 5.25 (d, *J* = 10.8 Hz, 1H), 4.11–4.08 (m, 1H), 3.83 (dd, *J* = 6.7, 3.4 Hz, 1H), 3.60 (dd, *J* = 8.3, 3.4 Hz, 1H), 3.46 (dd, *J* = 8.3, 3.1

Hz, 1H), 3.42 (s, 3H), 3.37 (s, 3H); 13 C NMR (100 MHz, CDCl₃, 24 °C, δ): 197.8 (C), 175.7 (C), 174.9 (C), 143.2 (C), 133.2 (CH), 131.5 (C), 129.1 (CH), 128.9 (CH), 126.2 (CH), 122.1 (CH), 117.0 (CH₂), 93.1 (C), 50.9 (CH₃), 50.4 (CH₃), 49.1 (CH), 41.7 (CH), 40.2 (CH), 39.8 (CH); HRMS (ESI-TOF) calcd for C₂₀H₁₉NO₅H [M + H]⁺, 354.1336. Found, 354.1349. IR (neat, cm⁻¹): 2923, 2849, 1740, 1712, 1498, 1383, 1189, 1135, 1058, 751, 692.

Spectral Data of **9a**. White solid, 29 mg, 51% yield. ¹H NMR (300 MHz, CDCl₃, 24 °C, δ): 6.29 (ddd, J = 1.3, 6.5, 8.1 Hz, 1H), 6.10 (ddd, J = 1.4, 6.2, 8.1 Hz, 1H), 3.78 (ddd, J = 1.6, 3.3, 6.4 Hz, 1H), 3.73 (ddd, J = 1.3, 3.0, 6.1 Hz, 1H), 3.63 (dd, J = 3.2, 10.4 Hz, 1H), 3.47 (dd, J = 3.0, 10.4 Hz, 1H), 3.39 (s, 3H), 3.32 (s, 3H), 1.15 (s, 3H), 0.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 216.3 (C), 214.8 (C), 199.5 (C), 134.2 (CH), 127.9 (CH), 93.2 (C), 55.3 (C), 50.3 (CH₃), 50.1 (CH₃), 48.6 (CH), 46.0 (CH), 45.5 (CH), 40.7 (CH), 22.7 (CH₃), 15.7 (CH₃); HMRS (ESI-TOF) calcd for C₁₅H₁₉O₅ [M + H]⁺, 279.1227. Found, 279.1237. IR (neat, cm⁻¹): 2976, 2943, 2887, 1741, 1722, 1461, 1380, 1309, 1286, 1226, 1208, 1142, 1094, 1060, 1006, 972, 891, 783, 728.

Spectral Data of 9b. Yellowish solid, 51 mg, 23% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 5.66 (dt. *J* = 6.2, 1.6 Hz, 1H), 3.61–3.57 (m, 3H), 3.43–3.38 (m, 1H), 3.37 (s, 3H), 3.35 (s, 3H), 1.79 (d, *J* = 1.6 Hz, 3H), 1.13 (s, 3H), 0.96 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 216.4 (C), 215.5 (C), 199.6 (C), 145.5 (C), 119.2 (CH), 93.3 (C), 54.9 (C), 50.7 (CH₃), 50.01 (CH₃), 48.5 (CH), 46.6 (CH), 45.6 (CH), 45.5 (CH), 22.4 (CH₃), 22.0 (CH₃), 15.8 (CH₃); HRMS (ESI-TOF) calcd for C₁₆H₂₀O₅Na [M + Na]⁺, 315.1203. Found, 315.1229. IR (neat, cm⁻¹): 2969, 2929, 1723, 1456, 1138, 1019, 1064, 1040.

Spectral Data of **9c**. White solid, 44 mg, 75% yield. ¹H NMR (300 MHz, CDCl₃, 24 °C, δ): 6.27 (dd, J = 6.6, 8.2 Hz, 1H), 5.82 (dd, J = 1.2, 8.2 Hz, 1H), 3.76 (ddd, J = 1.6, 3.2, 6.6 Hz, 1H), 3.62 (dd, J = 3.2, 10.3 Hz, 1H), 3.32 (s, 3H), 3.41 (s, 3H), 3.03 (d, J = 10.3 Hz, 1H), 1.57 (d, J = 1.2 Hz, 3H), 1.12 (s, 3H), 0.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 217.1 (C), 214.9 (C), 200.9 (C), 133.5 (CH), 133.3 (CH), 92.8 (C), 54.5 (C), 51.3 (C), 50.2 (CH₃), 50.0 (CH₃), 49.7 (CH), 47.3 (CH), 40.1 (CH), 23.0 (CH₃), 16.2 (CH₃), 15.2 (CH₃); HMRS (ESI-TOF) calcd for C₁₆H₂₀O₅Na [M + Na]⁺, 315.1203. Found, 315.1218. IR (neat, cm⁻¹): 2976, 2938, 2844, 1736, 1720, 1459, 1380, 1283, 1209, 1145, 1099, 1056, 1038, 721.

Spectral Data of **9d**. White solid, 44 mg, 75% yield. ¹H NMR (300 MHz, CDCl₃, 24 °C, δ): 5.87 (dt, J = 1.6, 6.4 Hz, 1H), 3.66 (dd, J = 3.2, 6.5 Hz, 1H), 3.60 (dd, J = 3.2, 10.1 Hz, 1H), 3.54 (dd, J = 1.7, 3.1 Hz, 1H), 3.47 (dd, J = 3.1, 10.1 Hz, 1H), 3.38 (s, 3H), 3.32 (s, 3H), 1.72 (d, J = 1.6 Hz, 3H), 1.13 (s, 3H), 0.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 216.8 (C), 215.1 (C), 199.4 (C), 138.2 (C), 125.9 (CH), 93.5 (C), 55.1 (C), 53.7 (CH), 50.2 (CH₃), 50.1 (CH₃), 46.2 (CH), 46.1 (CH), 40.6 (CH), 22.4 (CH₃), 20.9 (CH₃), 15.8 (CH₃); HMRS (ESI-TOF) calcd for C₁₆H₂₀O₅Na [M + Na]⁺, 315.1203. Found, 315.1215. IR (neat, cm⁻¹): 2972, 2940, 2831, 1763, 1723, 1461, 1444, 1379, 1285, 1235, 1203, 1139, 1097, 1080, 1053, 967, 833.

Spectral Data of **9e**. White solid, 61 mg, 42% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 6.10 (d, J = 1.3, 8.2 Hz, 1H), 5.97 (dd, J = 6.4, 8.2 Hz, 1H), 3.72 (ddd, J = 1.4, 2.4, 6.4 Hz, 1H), 3.48 (d, J = 10.2 Hz, 1H), 3.45 (dd, J = 2.4, 10.2 Hz, 1H), 3.41 (s, 3H), 3.27 (s, 3H), 1.66 (s, 3H), 1.12 (s, 3H), 0.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 216.5 (C), 215.5 (C), 198.8 (C), 142.3 (CH), 124.6 (CH), 94.8 (C), 55.1 (C), 54.7 (CH₃), 51.8 (CH₃), 50.5 (CH), 49.3 (C), 49.0 (CH), 47.0 (CH), 23.0 (CH₃), 15.9 (CH₃), 15.3 (CH₃); HMRS (ESI-TOF) calcd for C₁₆H₂₀O₅Na [M + Na]⁺, 315.1203. Found, 315.1215. IR (neat, cm⁻¹): 2978, 2944, 2840, 1764, 1736, 1721, 1460, 1379, 1283, 1202, 1096, 896, 785, 726.

Spectral Data of **9f.** Yellow solid, 23 mg, 15% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 6.27 (dd, *J* = 8.3, 6.5 Hz, 1H), 6.08 (dd, *J* = 8.3, 1.5 Hz, 1H), 5.24 (s, 1H), 3.75–3.47 (m, 7H), 3.43 (s, 3H), 3.29 (s, 3H), 1.42 (s, 3H), 1.13 (s, 3H), 0.98 (s, 3H), 0.75 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 216.6 (C), 214.4 (C), 195.8 (C), 132.4 (CH), 129.9 (CH), 100.0 (CH), 92.9 (C), 77.9 (CH₂), 77.7 (CH₂), 56.2 (C), 54.9 (C), 50.3 (CH₃), 50.1 (CH₃), 46.7 (CH), 46.5

(CH), 40.3 (CH), 30.6 (C), 23.1 (CH₃), 23.0 (CH₃), 21.7 (CH₃), 16.2 (CH₃); HRMS (ESI-TOF) calcd for $C_{21}H_{28}O_7Na$ [M + Na]⁺, 415.1727. Found, 415.1750. IR (neat, cm⁻¹): 2921, 2850, 1748, 1722, 1463, 1394, 1283, 1215, 1140, 1109, 1040, 755.

Spectral Data of 9h. White solid, 51 mg, 65% yield, mp 149.4–150.1 °C. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 6.17 (d, *J* = 6.5 Hz, 1H), 4.73 (d, *J* = 1.2 Hz, 1H), 3.89 (dd, *J* = 3.0, 2.1 Hz, 1H), 3.76 (dd, *J* = 6.4, 3.2 Hz, 1H), 3.64–3.57 (m, 3H), 3.46–3.40 (m, 3H), 3.39 (s, 3H), 3.33 (s, 3H), 1.12 (s, 3H), 1.10 (s, 3H), 0.99 (s, 3H), 0.71 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 215.9 (C), 215.6 (C), 199.5 (C), 143.9 (C), 123.4 (CH), 98.7 (CH), 93.3 (C), 77.2 (CH₂), 77.1 (CH₂), 54.4 (C), 50.2 (CH₃), 48.3 (CH), 46.6 (CH), 45.6 (CH), 41.2 (CH), 30.1 (C), 29.6 (C), 22.8 (CH₃), 21.7 (CH₃), 16.2 (CH₃); HRMS (ESI-TOF) calcd for C₂₁H₂₈O₇Na [M + Na]⁺, 415.1727. Found, 415.1747. IR (neat, cm⁻¹): 2953, 2923, 2851, 1725, 1463, 1137, 1106, 1081, 1061, 1030.

Spectral Data of 9i. White solid, 114 mg, 74% yield. ¹H NMR (300 MHz, CDCl₃, 24 °C, δ): 6.34 (ddd, *J* 0.8, 1.3, 8.8 Hz, 1H), 5.95 (dd, *J* 6.4, 8.7 Hz, 1H), 4.04 (d, *J* 10.3 Hz, 1H), 3.79 (s, 3H), 3.69 (ddd, *J* = 1.3, 2.7, 6.4 Hz, 1H), 3.48 (s, 3H), 3.47 (s, 3H), 3.38 (dd, *J* = 2.7, 10.4 Hz, 1H), 1.15 (s, 3H), 1.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 215.0 (C), 213.9 (C), 196.4 (C), 138.9 (CH), 123.0 (CH), 95.2 (C), 83.9 (C), 54.9 (C), 54.4 (CH₃), 52.9 (CH₃), 51.6 (CH₃), 48.0 (CH), 46.5 (CH), 45.2 (CH), 23.1 (CH₃), 16.2 (CH₃); HMRS (ESI-TOF) calcd for C₁₆H₂₁O₆ [M + H]⁺, 309.1333. Found, 309.1336. IR (neat, cm⁻¹): 2977, 2947, 2840, 1766, 1741, 1721, 1459, 1379, 1354, 1278, 1219, 1193, 1167, 1143, 1114, 1082, 987, 779, 720.

Spectral Data of **10a**. Yellow oil, 280 mg, 53% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 6.22 (dt, *J* = 6.8, 0.8 Hz, 1H), 5.63 (dq, *J* = 5.7, 2.2 Hz, 1H), 5.43–5.39 (m, 1H), 4.78 (d, *J* = 0.6 Hz, 1H), 3.61–3.55 (m, 2H), 3.42–3.37 (m, 3H), 3.37 (s, 3H), 3.30 (s, 3H), 3.28–3.22 (m, 1H), 3.15 (dd, *J* = 6.8, 3.0 Hz, 1H), 2.92–2.85 (m, 1H), 2.53 (dddd, *J* = 17.1, 10.2, 4.0, 1.8 Hz, 1H), 2.04–1.95 (m, 1H), 1.14 (s, 3H), 0.70 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 203.3 (C), 137.7 (C), 132,1 (CH), 130.5 (CH), 126.9 (CH), 99.5 (CH), 94.9 (C), 76.9 (CH₂), 76.8 (CH₂), 51.6 (CH), 50.5 (CH₃), 49.6 (CH₃), 49.3 (CH), 43.4 (CH), 38.3 (CH₂), 33.6 (CH), 30.0 (C), 22.9 (CH₃), 21.8 (CH₃); HRMS (ESI-TOF) calcd for C₁₉H₂₆O₅Na [M + Na]⁺, 357.1672. Found, 357.1698. IR (neat, cm⁻¹): 2952, 2845, 1736, 1470, 1393, 1137, 1098, 1056, 1025, 986.

Spectral Data of **10b**. Colorless oil, 251 mg, 75% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 6.04 (d, *J* = 6.6 Hz, 1H), 5.71–5.66 (m, 1H), 5.37 (dd, *J* = 5.5, 2.4 Hz, 1H), 4.91 (d, *J* = 1.0 Hz, 1H), 3.66 (dd, *J* = 9.0, 1.9 Hz, 2H), 3.50 (dd, *J* = 11.0, 5.2 Hz, 2H), 3.40 (t, *J* = 2.7 Hz, 1H), 3.38 (s, 3H), 3.33 (s, 3H), 3.28–3.22 (m, 1H), 3.17 (dd, *J* = 6.6, 2.5 Hz, 1H), 2.99–2.90 (m, 1H), 2.51–2.42 (m, 1H), 2.41–2.32 (m, 1H), 1.19 (s, 3H), 0.74 (s. 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 203.2 (C), 141.9 (C), 133.9 (CH), 129.1 (CH), 123.1 (CH), 99.8 (CH), 94.5 (C), 77.3 (CH₂), 77.0 (CH₂), 52.0 (CH), 49.9 (CH₃), 49.2 (CH), 43.4 (CH), 37.4 (CH₂), 33.8 (CH), 30.1 (C), 22.9 (CH₃), 21.8 (CH₃); HRMS (ESI-TOF) calcd for C₁₉H₂₆O₃Na [M + Na]⁺, 357.1678. Found, 357.1699. IR (neat, cm⁻¹): 2954, 2850, 1735, 1468, 1393, 1230, 1214, 1138, 1104, 1085, 1050, 1030, 990, 969, 838, 700.

General Procedure of the Photoreaction: (Synthesis of 7a as Example). A solution of 6a (20 mg, 0.061 mmol) in HPLC-grade acetonitrile (20 mL) in a quartz tube was degassed by sonication for 1 h and then was irradiated with a broad band of UV light centered at 306 nm in a Rayonet-type reaction for 3 h for 10 h. The crude was then concentrated. 7a (16 mg, $R_f = 0.2$, EA:Hexanes = 1:4) was isolated using column chromatography of the reaction crude in 85% yield as a white solid.

Spectral Data of **7a**. White solid, 16 mg, 85% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.35–7.50 (m, 3 H), 7.25–7.29 (m, 2 H), 6.09 (ddd, *J* = 1.9, 5.7, 10.1 Hz, 1H). 5.70 (ddd, *J* = 1.0, 2.1, 10.1 Hz, 1H), 3.47 (m, 2H), 3.43 (s, 3H), 3.31 (s, 3H), 2.22 (d, *J* = 9.6 Hz, 1H), 1.84 (dd, *J* = 5.6, 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 177.3 (C), 176.1 (C), 131.8 (C), 129.0 (2 × CH), 128.5 (CH), 126.3 (2 × CH), 123.4 (CH), 120.3 (CH), 94.5 (C), 54.7 (CH₃), 53.6 (CH₃), 41.4 (CH), 34.8 (CH), 22.2 (CH), 20.8 (CH); HMRS (EI-

TOF) calcd for $C_{17}H_{17}NO_4$ [M]⁺, 299.1158. Found, 299.1160. IR (neat, cm⁻¹): 2936, 2824, 1777, 1714, 1597, 1500, 1442, 1379, 1261, 1242, 1179, 1128, 1099, 1040, 1018, 926, 805, 754, 691, 620.

Spectral Data of 7b. White solid, 132 mg, 90% yield, mp 147.5–149.7 °C. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.49–7.43 (m, 2H), 7.41–7.35 (m, 1H), 7.30–7.27 (m, 2H), 5.91 (dd, *J* = 9.5, 1.00 Hz, 1H), 5.69 (dt, *J* = 9.8, 1.4, Hz, 1H), 3.45 (m, 2H), 3.44 (s, 3H), 3.24 (s. 3H), 1.83 (s, 1H), 1.31 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 177.5 (C), 176.2 (C), 131.9 (C), 129.3 (CH), 129.0 (CH), 128.4 (CH), 126.3 (CH), 120.1 (CH), 96.0 (C), 54.6 (CH₃), 53.9 (CH₃), 41.4 (CH), 35.4 (CH), 26.1 (CH), 25.9 (C), 18.5 (CH₃); HRMS (ESI-TOF) calcd for C₁₈H₁₉NO₄Na [M + Na]⁺, 336.1206. Found, 336.1226. IR (neat, cm⁻¹): 2933, 1715, 1598, 1500, 1456, 1381, 1178, 1131, 1026, 802, 760, 721, 691.

Spectral Data of 7c. White solid, 14 mg, 77% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.35–7.50 (m, 3 H), 7.24–7.30 (m, 2 H), 5.74–5.80 (m, 1H), 3.51 (d, *J* = 9.5 Hz, 1H), 3.41 (s, 3H), 3.26–3.33 (m, 4H), 2.15 (d, *J* = 9.8 Hz, 3H), 1.94 (s, 3H), 1.81 (dd, *J* = 5.4, 9.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 177.2 (C), 174.7 (C), 131.8 (C), 128.9 (2 × CH), 128.3 (CH), 126.9 (C), 126.3 (2 × CH), 118.5 (CH), 94.0 (C), 54.6 (CH₃), 53.5 (CH₃), 44.3 (CH), 36.9 (CH), 22.7 (CH), 21.6 (CH₃), 19.9 (CH); HMRS (EI-TOF) calcd for C₁₈H₁₉NO₄ [M]⁺, 313.1314. Found, 313.1316. IR (neat, cm⁻¹): 2936, 2831, 1776, 1713, 1597, 1497, 1443, 1409, 1381, 1260, 1239, 1180, 1113, 1043, 840, 798, 749, 691, 517.

Spectral Data of **7d**. White solid, 13 mg, 69% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.35–7.50 (m, 3 H), 7.25–7.30 (m, 2 H), 5.44 (dd, *J* = 1.4, 2.7 Hz, 1H), 3.46 (dt, *J* = 2.6, 10.1 Hz, 1H), 3.42 (s, 3H), 3.39 (dd, *J* = 0.8, 9.6 Hz, 1H), 3.30 (s, 3H), 2.25 (d, *J* = 9.7 Hz, 1H), 1.94 (t, *J* = 1.8 Hz, 3H), 1.70 (d, *J* = 9.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 177.5 (C), 176.6 (C), 131.9 (C), 131.6 (C), 129.0 (2 × CH), 128.5 (CH), 126.4 (2 × CH), 114.3 (CH), 94.2 (C), 54.1 (CH₃), 53.6 (CH₃), 42.1 (CH), 34.7 (CH), 26.3 (CH), 24.3 (CH₃), 21.9 (CH); HMRS (EI-TOF) calcd for C₁₈H₁₉NO₄ [M]⁺, 313.1314. Found, 313.1316. IR (neat, cm⁻¹): 2936, 2828, 1786, 1714, 1594, 1499, 1442, 1413, 1382, 1241, 1180, 1113, 1096, 1042, 1006, 761, 734, 691.

Spectral Data of **7e**. White solid, 18 mg, 92% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.34–7.49 (m, 3 H), 7.22–7.27 (m, 2 H), 6.11 (ddd, *J* = 3.0, 6.0, 10.0 Hz, 1H), 5.65 (dt, *J* = 2.7, 10.0 Hz, 1H), 3.59 (dt, *J* = 2.9, 9.3 Hz, 1H), 3.37–3.41 (m, 4H), 3.27 (s, 3H), 1.60 (s, 3H), 1.50 (d, *J* = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 176.3 (C), 176.0 (C), 131.7 (C), 129.0 (2 × CH), 128.4 (CH), 126.5 (2 × CH), 124.1 (CH), 120.0 (CH), 96.9 (C), 54.6 (CH₃), 53.8 (CH₃), 44.0 (CH), 38.6 (CH), 28.4 (CH), 27.1 (CH₃), 16.5 (CH₃); HMRS (ESI-TOF) calcd for C₁₈H₁₉NO₄Na [M + Na]⁺, 336.1206. Found, 336.1221. IR (neat, cm⁻¹): 2937, 2831, 1775, 1715, 1594, 1500, 1457, 1382, 1255, 1200, 1180, 1137, 1094, 1056, 1031, 1007, 797, 752, 691, 633.

Spectral Data of **7f**. White solid, 39 mg, 52% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.50–7.33 (m, 3H), 7.30–7.25 (m, 2H), 6.50–6.43 (m, 1H), 5.19 (s, 1H), 3.70–3.50 (m, 6H), 3.42 (s, 3H), 3.32 (s, 3H), 2.19 (d, *J* = 9.7 Hz, 1H), 1.93 (dd, *J* = 9.7, 6.0 Hz, 1H), 1.19 (s, 3H), 0.73 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 177.2 (C), 174.9 (C), 131.9 (C), 129.0 (CH), 128.5 (CH), 127.7 (C), 126.4 (CH), 120.5 (CH), 98.6 (CH), 94.5 (C), 77.6 (CH₂), 77.3 (CH₂), 55.0 (CH₃), 53.8 (CH₃), 40.5 (CH), 36.6 (CH), 30.3 (C), 23.0 (CH₃), 22.5 (C), 21.7 (CH₃), 20.8 (CH); HRMS (ESI-TOF) calcd for C₂₃H₂₇NO₆Na [M + Na]⁺, 436.1730. Found, 436.1749. IR (neat, cm⁻¹): 2953, 2930, 2853, 1714, 1498, 1385, 1190, 1108, 1042, 753, 732, 692.

Spectral Data of **7g**. White solid, 47 mg, 75% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.48–7.41 (m, 2H), 7.40–7.34 (m, 1H), 7.30–7.26 (m, 2H), 5.89 (d, *J* = 2.9 Hz, 1H), 4.88 (s, 1H), 3.69 (s, 1H), 3.66 (s, 1H), 3.54–3.48 (m, 3H), 3.45 (dd, *J* = 9.8, 0.7 Hz, 1H), 3.45 (s, 3H), 3.38 (s, 3H), 2.29 (d, *J* = 2.3 Hz, 1H), 2.12 (d, *J* = 9.8 Hz, 1H), 1.21 (s, 3H), 0.74 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 177.0 (C), 175.8 (C), 133.5 (C), 131.8 (C), 129.0 (CH), 128.5 (CH), 126.4 (CH), 118.3 (CH), 102.1 (CH), 93.8 (C), 77.3 (CH₂), 77.2 (CH₂), 54.0 (CH₃), 53.7 (CH₃), 41.6 (CH), 35.0 (CH), 30.1

(C), 23.0 (CH₃), 21.8 (CH₃), 21.6 (CH), 21.0 (CH); HRMS (ESI-TOF) calcd for $C_{23}H_{27}NO_6Na$ [M + Na]⁺, 436.1730. Found, 436.1729. IR (neat, cm⁻¹): 2953, 2928, 2855, 1714, 1498, 1463, 1443, 1383, 1254, 1194, 1098, 1059.

Spectral Data of 7h. White solid, 67 mg, 90% yield, mp 183.0–189.1 °C. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.49–7.42 (m, 2H), 7.40–7.34 (m, 1H), 7.33–7.28 (m, 2H), 6.38 (dd, *J* = 10.4, 2.7 Hz, 1H), 5.80 (dd, = 10.3, 6.2 Hz, 1H), 4.26 (s, 1H), 3.67 (dd, *J* = 10.7, 2.8 Hz, 1H), 3.58 (dd, *J* = 11.2, 2.8 Hz, 1H), 3.51–3.42 (m, 3H), 3.46 (s, 3H), 3.39–3.34 (m, 1 H), 3.28 (s, 3H), 2.14 (s, 1H), 1.21 (s, 3H), 0.71 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 176.9 (C), 175.9 (C), 131.8 (C), 128.9 (CH), 128.4 (CH), 126.3 (CH), 123.0 (CH), 120.8 (CH), 101.9 (CH), 95.1 (C), 77.4 (CH₂), 77.3 (CH₂), 55.1 (CH₃), 54.0 (CH₃), 41.6 (CH), 34.9 (CH), 34.1 (C), 29.9 (C), 24.1 (CH), 23.0 (CH₃), 21.8 (CH₃); HRMS (ESI-TOF) calcd for C₂₃H₂₇NO₆Na [M + Na]⁺, 436.1730. Found, 436.1751. IR (neat, cm⁻¹): 2926, 2850, 1716, 1378, 1182, 1102, 1024.

Spectral Data of 7i. White solid, 13 mg, 69% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.35–7.51 (m, 3 H), 7.24–7.29 (m, 2 H), 6.90 (d, *J* = 3.3 Hz, 1H), 3.81 (s, 3H), 3.65 (dd, *J* = 3.3, 9.9 Hz, 1H), 3.49 (dd, *J* = 0.9, 9.9 Hz, 1H), 3.45 (s, 3H), 3.25 (s, 3H), 2.41 (d, *J* = 9.8 Hz, 1H), 2.35 (d, *J* = 9.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 176.3 (C), 174.2 (C), 165.8 (C), 131.4 (C), 129.8 (CH), 128.9 (2 × CH), 128.5 (CH), 127.4 (C), 126.1 (2 × CH), 93.7 (C), 54.1 (CH₃), 53.7 (CH₃), 52.1 (CH₃), 42.3 (CH), 34.2 (CH), 21.5 (CH), 21.3 (CH); HMRS (EI-TOF) calcd for C₁₉H₁₉NO₆ [M]⁺, 357.1212. Found, 357.1207. IR (neat, cm⁻¹): 2952, 2828, 1776, 1716, 1594, 1497, 1414, 1385, 1259, 1186, 1114, 1069, 1038, 1008, 761, 693.

Spectral Data of 7m. White solid, 17 mg, 86% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.33–7.50 (m, 3 H), 7.27–7.32 (m, 2 H), 4.95 (dd, *J* = 1.7, 5.7 Hz, 1H), 3.62 (s, 3H), 3.58 (dd, *J* = 1.0, 9.4 Hz, 1H), 3.49 (dd, *J* = 1.8, 9.4 Hz, 1H), 3.41 (s, 3H), 3.32 (s, 3H), 2.09 (dd, *J* = 1.0, 9.9 Hz, 1H), 1.90 (dd, *J* = 5.7, 9.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 176.9 (C), 173.0 (C), 148.7 (C), 131.8 (C), 129.0 (2 × CH), 128.4 (CH), 126.3 (2 × CH), 93.6 (CH), 89.9 (CH), 55.0 (CH₃), 54.2 (CH₃), 53.6 (CH₃), 42.7 (CH), 38.5 (CH), 22.2 (CH), 19.5 (CH); HMRS (ESI-TOF) calcd for C₁₈H₁₉NO₅Na [M + Na]⁺, 352.1155. Found, 352.1157. IR (neat, cm⁻¹): 2936, 2831, 1781, 1716, 1666, 1597, 1500, 1444, 1383, 1334, 1261, 1224, 1180, 1114, 1040, 1022, 814, 749, 692.

Spectral Data of **7n**. White solid, 18 mg, 90% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.35–7.50 (m, 3H), 7.24–7.30 (m, 2H), 6.05 (ddd, *J* = 0.3, 2.9, 9.9 Hz, 1H). 5.70 (dd, *J* = 2.9, 9.9 Hz, 1H), 3.77 (d, *J* = 9.3 Hz, 1H), 3.62 (dtd, *J* = 0.4, 2.9, 9.3 Hz, 1H), 3.51 (s, 3H), 3.46 (s, 3H), 3.34 (s, 3H), 2.04 (d, *J* = 6.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 175.5 (C), 173.6 (C), 131.5 (C), 128.7 (2 × CH), 128.2 (CH), 126.2 (2 × CH), 122.5 (CH), 120.5 (CH), 95.1 (C), 66.5 (C), 56.3 (CH₃), 54.5 (CH₃), 54.0 (CH₃), 44.2 (CH), 36.7 (CH), 27.1 (CH); HMRS (EI-TOF) calcd for C₁₈H₁₉NO₅ [M]⁺, 329.1263. Found, 329.1259. IR (neat, cm⁻¹): 2937, 2834, 1778, 1715, 1593, 1499, 1455, 1386, 1376, 1212, 1180, 1127, 1030, 801, 756, 691, 630.

Spectral Data of 7p. White solid, 19 mg, 100% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.35–7.51 (m, 3 H), 7.22–7.30 (m, 2 H), 5.92–5.98 (m, 1H), 5.67–5.72 (m, 1H), 3.45 (d, *J* = 1.4 Hz, 2H), 3.38 (s, 3H), 3.24 (s, 3H), 2.10 (s, 1H), 0.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 177.6 (C), 176.4 (C), 131.9 (C), 129.0 (2 × CH), 128.4 (CH), 126.3 (2 × CH), 126.0 (CH), 119.7 (CH), 97.5 (C), 54.7 (CH₃), 53.3 (CH₃), 41.0 (CH), 35.1 (CH), 23.2 (CH), 21.3 (C), -2.5 (3 × CH₃); HMRS (EI-TOF) calcd for C₂₀H₂₅NO₄Si [M]⁺, 371.1553. Found, 371.1557. IR (neat, cm⁻¹): 2953, 2902, 2828, 1779, 1716, 1601, 1499, 1440, 1378, 1278, 1247, 1178, 1111, 1066, 1025, 989, 891, 864, 839, 804, 775, 751, 690, 622.

Spectral Data of **7q**. White solid, 15 mg, 80% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.32–7.50 (m, 3 H), 7.22–7.29 (m, 2 H), 5.95 (dd, *J* = 1.0, 9.6 Hz, 1H), 5.65–5.80 (m, 2H), 5.00–5.13 (m, 2H), 3.46 (t, *J* = 1.4 Hz, 2H), 3.44 (s, 3H), 3.22 (s, 3H), 2.31 (m, 2H), 1.91 (s, 1H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 177.4 (C), 176.2 (C), 135.6 (CH), 131.8 (C), 129.0 (2 × CH), 128.5 (CH), 127.4 (CH), 126.3 (2 × CH), 120.7 (CH), 116.9 (CH₂), 96.1 (CH),

54.6 (CH₃), 53.9 (CH₃), 41.6 (CH), 36.6 (CH₂), 35.4 (CH), 29.9 (C), 25.8 (CH); HMRS (EI-TOF) calcd for $C_{20}H_{21}NO_4$ [M]⁺, 339.1471. Found, 339.1469. IR (neat, cm⁻¹): 2935, 2821, 1777, 1715, 1601, 1499, 1441, 1379, 1178, 1129, 1056, 1018, 941, 916, 808, 754, 691, 615.

Spectral Data of **7r**. White solid, 23 mg, 49% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.50–7.40 (m, 2H), 7.38–7.34 (m, 1H), 7.34–7.30 (m, 2H), 5.22 (d, *J* = 1.2 Hz, 1H), 4.27 (s, 1H), 3.67 (s, 3H), 3.61–3.46 (m, 4H), 3.42 (s, 3H), 3.39–3.35 (m, 2H), 3.29 (s, 3H), 1.98 (s, 1H), 1.20 (s, 3H), 0.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 176.6 (C), 172.9 (C), 149.0 (C), 131.9 (C), 128.9 (CH), 128.4 (CH), 126.4 (CH), 101.9 (CH), 94.6 (C), 89.6 (CH), 77.4 (CH₂), 77.2 (CH₂), 55.1 (CH₃), 54.6 (CH₃), 54.0 (CH₃), 42.7 (CH), 38.4 (CH), 34.9 (C), 30.0 (C), 23.1 (CH), 21.8 (CH₃); HRMS (ESI-TOF) calcd for C₂₄H₂₉NO₇Na [M + Na]⁺, 466.1836. Found, 466.1844. IR (neat, cm⁻¹): 2920, 2850, 1720, 1660, 1633, 1469, 1455, 1380, 1200, 1129, 1101, 1019.

Spectral Data of 7t. White solid, 17 mg, 87% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.33–7.50 (m, 3 H), 7.22–7.28 (m, 2 H), 5.46 (d, *J* = 2.70 Hz, 1H), 3.50 (dd, *J* = 2.7, 9.6 Hz, 1H), 3.43 (s, 3H), 3.39 (d, *J* = 9.6 Hz, 1H), 3.31 (s, 3H), 2.25 (d, *J* = 9.9 Hz, 1H), 1.90 (d, *J* = 9.9 Hz, 1H), 1.14 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ):177.5 (C), 177.1 (C), 144.1 (C), 131.9 (C), 129.0 (2 × CH), 128.4 (CH), 126.3 (2 × CH), 110.9 (CH), 93.6 (C), 53.3 (CH₃), 42.7 (CH), 36.2 (C), 34.7 (CH), 29.2 (3 × CH₃), 22.9 (CH), 21.5 (CH); HMRS (ESI-TOF) calcd for C₂₁H₂₅NO₄Na [M + Na]⁺, 378.1676. Found, 378.1692. IR (neat, cm⁻¹): 2964, 2902, 2867, 1777, 1715, 1594, 1500, 1442, 1410, 1383, 1240, 1178, 1134, 1047, 1033, 864, 769, 754, 736, 703, 691.

Spectral Data of **7u**. White solid, 16 mg, 85% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.34–7.50 (m, 3 H), 7.22–7.27 (m, 2 H), 6.10 (d, *J* = 10.4 Hz, 1H), 5.67–5.74 (m, 1H), 3.43–3.45 (m, 2H), 3.39 (s, 3H), 3.19 (s, 3H), 2.22 (s, 1H), 1.00 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 177.9 (C), 176.4 (C), 131.9 (C), 129.1 (2 × CH), 128.5 (CH), 127.0 (CH), 126.3 (2 × CH), 120.1 (CH), 96.2 (C), 54.4 (CH₃), 53.3 (CH₃), 41.4 (CH), 38.0 (CH₃), 35.7 (CH), 31.6 (C), 27.9 (3 × CH₃), 21.4 (CH); HMRS (ESI-TOF) calcd for C₂₁H₂₅NO₄Na [M + Na]⁺, 378.1676. Found, 378.1689. IR (neat, cm⁻¹): 3032, 2955, 2824, 1777, 1716, 1597, 1499, 1457, 1440, 1407, 1378, 1282, 1224, 1206, 1177, 1122, 1082, 1058, 1031, 1000, 825, 809, 782, 752, 691, 615.

Spectral Data of **7v**. White solid, 36 mg, 86% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 9.67 (s, 1H), 7.44–7.32 (m, 3H), 7.12 (dd, *J* = 3.5, 1.3 Hz, 1H), 7.06–7.02 (m, 2H), 4.03–4.00 (m, 1H), 3.78–3.74 (m, 1H), 3.67 (qd, *J* = 7.4, 4.5 Hz, 2H), 3.29 (s, 3H), 3.17 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 186.3 (CH), 175.3 (C), 174.8 (C), 147.3 (CH), 146.4 (C), 131.3 (C), 129.1 (CH), 128.8 (CH), 126.2 (CH), 121.1 (C), 52.5 (CH₃), 50.4 (CH₃), 49.3 (CH), 45.3 (CH), 43.9 (CH), 42.8 (CH); HRMS (ESI-TOF) calcd for C₁₈H₁₇NO₅H [M + H]⁺, 328.1179. Found, 328.1185. IR (neat, cm⁻¹): 2925, 2850, 1713, 1681, 1497, 1455, 1379, 1275, 1183, 1111, 1036, 744, 692.

Spectral Data of **7x**. White solid, 30 mg, 33% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.50–7.35 (m, 3H), 7.29–7.26 (m, 2H), 6.23–6.18 (m, 1H), 5.84 (dd, *J* = 17.7, 10.8 Hz, 1H), 5.83–5.79 (m, 1H), 5.18 (dd, *J* = 15.7, 0.8 Hz, 1H), 5.15 (dd, *J* = 9.0, 0.9 Hz, 1H), 3.53–3.51 (m, 2H), 3.46 (s, 3H), 3.27 (s, 3H), 2.23 (s, 1H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 177.3 (C), 176.0 (C), 138.2 (CH), 133.1 (C), 129.1 (CH), 128.6 (CH), 120.1 (CH), 114.0 (CH₂), 93.8 (C), 77.2 (C), 54.0 (CH₃), 53.7 (CH₃), 42.1 (CH). 34.9 (CH), 29.7 (C), 21.5 (CH), 21.4 (CH); HRMS (ESI-TOF) calcd for C₁₉H₁₉NO₄H [M + H]⁺, 326.1386. Found, 326.1393. IR (neat, cm⁻¹): 2918, 2849, 1714, 1497, 1455, 1384, 1243, 1181, 1042, 749, 691.

Spectral Data of **7y**. White solid, 8 mg, 87% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.48–7.34 (m, 3H), 7.29–7.27 (m, 2H), 6.20 (d, *J* = 10.7 Hz, 1H), 5.84 (dd, *J* = 17.7, 10.8 Hz, 2H), 5.83–5.78 (m, 1H), 5.21–5.12 (m, 1H), 3.53–3.51 (m, 2H), 3.46 (s, 3H), 3.27 (s, 3H), 2.23 (s, 1H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 177.0 (C),176.0 (C), 136.5 (CH), 131.7 (C), 129.1 (CH), 128.6 (CH), 126.4 (CH), 124.5 (CH), 120.9 (CH), 114.1 (CH₂), 96.6 (C), 54.7 (CH₃), 54.3 (CH₃), 41.5 (CH), 35.3 (CH), 32.3 (C), 27.6 (CH);

HRMS (ESI-TOF) calcd for $C_{19}H_{19}NO_4Na$ [M + Na]⁺, 348.1206. Found, 348.1221. IR (neat, cm⁻¹): 2923, 2850, 1714, 1598, 1499, 1382, 1181, 1025, 953, 691.

Spectral Data of 8l. White solid, 143 mg, 90% yield, mp 141.2–142.4 °C. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 7.53–7.40 (m, 3H), 7.28–7.24 (m, 2H), 3.94 (s, 1H), 3.45 (s, 3H), 3.39 (d, J = 7.2 Hz, 1H), 3.30 (d, J = 7.3 Hz, 1H), 3.28 (s, 3H), 3.07 (d, J = 10.1 Hz, 1H), 2.80 (d, J = 10.1 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 201.9 (C), 199.6 (C), 176.0 (C), 174.9 (C), 131.3 (C), 129.2 (CH), 129.0 (CH), 126.1 (CH), 105.4 (C), 51.5 (CH₃), 50.3 (C), 50.1 (CH₃), 50.0 (C), 48.3 (CH), 46.1 (CH), 44.7 (CH), 40.2 (CH), 27.7 (CH₃); HRMS (ESI-TOF) calcd for C₂₀H₁₉NO₆Na [M + H]⁺, 392.1105. Found, 392.1125. IR (neat, cm⁻¹): 2917, 2849, 1751, 1716, 1496, 1382, 1183, 1143, 1062, 753, 705, 691.

Spectral Data of **8***w*. White solid, 36 mg, 45% yield, mp 211.3– 213.5 °C. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 9.60 (s, 1H), 7.47– 7.36 (m, 3H), 7.15–7.09 (m, 3H), 4.47 (dd, *J* = 3.2, 2.0 Hz, 1H), 4.04 (dd, *J* = 6.3, 3.1 Hz, 1H), 3.69 (dd, *J* = 8.6, 3.3 Hz, 1H), 3.55 (dd, *J* = 8.5, 2.9 Hz, 1H), 3.45 (s, 3H), 3.31 (s, 3H); ¹³C NMR (100 MHz, C₆D₆, 24 °C, δ): 196.7 (C), 186.8 (CH), 174.8 (C), 173.9 (C), 144.9 (C), 141.5 (CH), 131.1 (C), 129.2 (CH), 129.0 (CH), 126.0 (CH), 92.4 (C), 50.6 (CH₃),50.5 (CH₃) 50.0 (C), 41.0 (CH), 39.3 (CH), 37.7 (CH); HRMS (ESI-TOF) calcd for C₁₉H₁₇NO₆Na [M + Na]⁺, 378.0948. Found, 378.0963. IR (neat, cm⁻¹): 2917, 2850, 1458, 1387, 1711, 1458, 1387, 1097, 1181, 753.

Spectral Data of **11***a*. White solid, 9 mg, 50% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 6.02 (ddd, *J* = 3.0, 5.7, 9.9 Hz, 1H), 5.37 (dd, *J* = 2.4, 9.9 Hz, 1H), 3.43 (dt, *J* = 2.7, 11.0 Hz, 1H), 3.37 (s, 3H), 3.25 (s, 3H), 3.36 (d, *J* = 11.0 Hz, 1H), 2.23 (dd, *J* = 1.1, 9.7 Hz, 1H), 1.77 (dd, *J* = 5.8, 9.7 Hz, 1H), 1.16 (s, 3H), 1.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 216.9 (C), 216.0 (C), 124.8 (CH), 120.6 (CH), 95.2 (C), 54.6 (CH₃), 53.5 (CH₃), 51.3 (C), 49.2 (CH), 40.0 (CH), 22.5 (CH), 22.3 (CH₃), 22.0 (CH), 20.7 (CH₃); HMRS (ESI-TOF) calcd for C₁₄H₁₈O₄Na [M + Na]⁺, 273.1097. Found, 273.1106. IR (neat, cm⁻¹): 2970, 2935, 2867, 2831, 1767, 1725, 1461, 1442, 1403, 1381, 1259, 1210, 1128, 1040, 1019, 789, 754.

Spectral Data of 11b. White solid, 8 mg, 40% yield. ¹H NMR (300 MHz, CDCl₃, 24 °C, δ): 6.20 (dd, J = 10.1, 2.6 Hz, 1H), 5.74 (dd, J = 9.8, 2.2 Hz, 1H), 3.74 (s, 3H), 3.73–3.70 (m, 2H), 3.54 (s, 3H), 2.17 (s, 1H), 1.62 (s, 3H), 1.52 (s, 3H), 1.44 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 217.2 (C), 216.1 (C), 130.5 (CH), 120.5 (CH), 54.5 (CH₃), 53.7 (CH₃), 51.4 (C), 49.0 (CH), 40.4 (CH), 29.7 (C), 27.8 (CH), 25.7 (C), 22.3 (CH₃), 20.8 (CH₃), 18.7 (CH₃); HRMS (ESI-TOF) calcd for C₁₅H₂₀O₄Na [M + Na]⁺, 287.1253. Found, 287.1284. IR (neat, cm⁻¹): 2918, 2847, 1698, 1539, 1470, 1463, 1455.

Spectral Data of **11c**. White solid, 11 mg, 40% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 5.73–5.78 (m, 1H), 3.37 (s, 3H), 3.31 (d, *J* = 11.0 Hz, 1H), 3.25 (s, 3H), 3.22 (d, *J* = 11.0 Hz, 1H), 2.18 (dd, *J* = 1.3 Hz, 9.9, 1H), 1.79 (dd, *J* = 5.6, 9.9 Hz, 1H), 1.70 (s, 3H), 1.14 (s, 3H), 1.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 216.8 (C), 215.1 (C), 126.8 (C), 119.6 (CH), 94.7 (C), 54.4 (CH₃), 53.4 (CH₃), 52.3 (CH), 50.8 (C), 42.8 (CH), 22.7 (CH), 21.8 (CH), 21.8 (CH₃), 21.3 (CH₃), 20.9 (CH₃); HMRS (ESI-TOF) calcd for C₁₅H₂₁O₄ [M + H]⁺, 265.1434. Found, 265.1441. IR (neat, cm⁻¹): 2969, 2936, 2870, 2824, 1764, 1725, 1463, 1443, 1408, 1379, 1287, 1260, 1222, 1197, 1139, 1114, 1044, 1030, 937, 856, 831.

Spectral Data of 11d. White solid, 15 mg, 80% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 5.14 (s, 3H), 3.41 (dd, *J* = 2.3, 10.4 Hz, 1H), 3.38 (s, 3H), 3.32 (dd, *J* = 1.3, 10.8 Hz, 1H), 3.25 (s, 3H), 2.27 (d, *J* = 1.0, 9.8 Hz, 1H), 1.87 (dd, *J* = 1.5, 2.4 Hz, 1H), 1.66 (d, *J* = 9.8 Hz, 1H), 1.17 (s, 3H), 1.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 217.2 (C), 216.2 (C), 133.1 (C), 114.4 (CH), 94.9 (C), 54.0 (CH₃), 53.4 (CH₃), 51.0 (C), 49.5 (CH), 39.9 (CH), 26.0 (CH), 24.5 (CH₃), 23.4 (CH), 22.4 (CH₃), 20.6 (CH₃); HMRS (ESI-TOF) calcd for C₁₅H₂₁O₄ [M + H]⁺, 265.1434. Found, 265.1438. IR (neat, cm⁻¹): 2970, 2935, 2867, 2831, 1764, 1724, 1442, 1411, 1379, 1267, 1225, 1197, 1162, 1132, 1049, 931, 839.

Spectral Data of 11e. White solid, 9 mg, 39% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 6.07 (ddd, *J* = 3.4, 6.0, 9.8 Hz, 1H), 5.27 (dd, *J* = 2.3, 9.8 Hz, 1H), 3.55 (dt, *J* = 2.8, 9.9 Hz, 1H), 3.35 (s, 3H), 3.26

(d, J = 10.0 Hz, 1H), 3.21 (s, 3H), 1.60 (s, 3H), 1.52 (d, J = 6.1 Hz, 1H), 1.15 (s, 3H), 1.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 215.9 (C), 215.9 (C), 126.4 (CH), 119.9 (CH), 97.3 (C), 54.5 (CH₃), 53.6 (CH₃), 52.5 (CH), 51.8 (C), 44.4 (CH), 30.2 (C), 28.5 (CH), 21.8 (CH₃), 21.0 (CH₃), 16.3 (CH₃); HMRS (ESI-TOF) calcd for C₁₅H₂₁O₄ [M + H]⁺, 265.1434. Found, 265.1437. IR (neat, cm⁻¹): 2972, 2937, 2863, 2828, 1736, 1726, 1463, 1442, 1380, 1286, 1239, 1196, 1123, 1103, 1053, 1030, 999, 966, 796, 756.

Spectral Data of **11***g*. White solid, 8 mg, 43% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 6.31 (dd, *J* = 10.3, 3.3 Hz, 1H), 5.54 (dd, *J* = 10.3, 2.8 Hz, 1H), 4.24 (s, 1H), 3.64 (dd, *J* = 10.9, 2.8 Hz, 1H), 3.53 (dd, *J* = 11.1, 2.8 Hz, 1H), 3.47–3.43 (m, 1H), 3.40 (t, *J* = 3.0 Hz, 1H), 3.38–3.29 (m, 2H), 3.23 (s, 3H), 2.11 (s, 1H), 1.16 (s, 6H), 1.12 (s, 3H), 0.69 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 216.4 (C), 216.0 (C), 123.7 (CH), 121.2 (CH), 102.0 (CH), 95.6 (C), 77.4 (CH₂), 77.3 (CH₂), 54.9 (CH₃), 53.8 (CH₃), 51.8 (C), 48.8 (CH), 39.9 (CH), 33.8 (C), 29.9 (C), 25.6 (CH), 22.9 (CH₃), 21.8 (CH₃), 21.7 (CH₃), 21.3 (CH₃); HRMS (ESI-TOF) calcd for C₂₀H₂₈O₆Na [M + Na]⁺, 387.1178. Found, 387.1792. IR (neat, cm⁻¹): 2925, 2852, 1727, 1461, 1381, 1138, 1105, 1027.

Spectral Data of **11h**. White solid, 8 mg, 44% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 5.99 (ddd, *J* = 3.2, 6.3, 9.7 Hz, 1H), 5.32 (dd, *J* = 2.5, 9.7 Hz, 1H), 3.61 (d, *J* = 10.0 Hz, 1H), 3.50 (dt, *J* = 2.6, 10.0 Hz, 1H), 3.46 (s, 3H), 3.45 (s, 3H), 3.26 (s, 3H), 2.06 (d, *J* = 6.3 Hz, 1H), 1.17 (s, 3H), 1.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, 24 °C, δ): 215.3 (C), 213.5 (C), 124.6 (CH), 121.0 (CH), 95.2 (C), 69.2 (C), 56.2 (CH₃), 54.5 (CH₃), 54.2 (CH₃); 52.6 (CH), 51.9 (C), 42.8 (CH), 27.3 (CH), 21.6 (CH₃), 21.5 (CH₃); HMRS (ESI-TOF) calcd for C₁₅H₂₁O₅ [M + H]⁺, 281.1384. Found, 281.1382. IR (neat, cm⁻¹): 2969, 2937, 2834, 1763, 1728, 1460, 1443, 1381, 1285, 1203, 1134, 1105, 1032.

Spectral Data of **12a.** Colorless oil, 28 mg, 61% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 5.69–5.64 (m, 1H), 5.60–5.56 (m, 1H), 5.43 (d, *J* = 2.13 Hz, 1H), 4.79 (s, 1H), 3.68–3.61 (m, 2H), 3.48 (t, *J* = 10.5 Hz, 2H), 3.39 (s, 6H), 3.07 (d, *J* = 9.3 Hz, 1H), 2.73 (q, *J* = 9.4 Hz, 1H), 4.30 (dddd, *J* = 16.0, 8.5, 2.7, 1.2 Hz, 1H), 2.23–2.14 (m, 1H), 2.01 (d, *J* = 9.9 Hz, 1H), 1.60 (d, *J* = 9.9 Hz, 1H), 1.22 (s, 3H), 0.72 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 132.5 (CH), 129.4 (CH), 128.6 (C), 124.6 (CH), 104.0 (CH), 95.1 (C), 77.3 (CH₂), 77.2 (CH₂), 53.6 (CH₃), 53.1 (CH₃), 43.7 (CH), 38.0 (CH₂), 31.0 (CH), 30.1 (C), 26.0 (CH), 23.0 (CH₃), 21.8 (CH₃), 21.3 (CH); HRMS (ESI-TOF) calcd for C₁₈H₂₆O₄Na [M + Na]⁺, 329.1723. Found, 329.1740. IR (neat, cm⁻¹): 2953, 2921, 2850, 1718, 1439, 1393, 1248, 1101, 1043, 754, 667.

Spectral Data of 12b. White solid, 18 mg, 95% yield. ¹H NMR (400 MHz, CDCl₃, 24 °C, δ): 6.06 (dd, J = 10.4, 2.8 Hz, 1H), 5.71–5.66 (m, 1H), 5.58–5.55 (m, 1H), 5.38 (dd, J = 10.4, 2.0 Hz, 1H), 4.21 (s, 1H), 3.69–3.61 (m, 2H), 3.47 (d, J = 11.1 Hz, 1H), 3.42–3.37 (m, 1H), 3.39 (s, 3H), 3.30 (s, 3H), 3.08–3.02 (m, 1H), 2.66 (q, J = 9.2 Hz, 1H), 2.42 (dddd, J = 15.9, 8.4, 2.8, 1.4 Hz, 1H), 2.25–2.15 (m, 1H), 1.40 (s, 1H), 1.22 (s, 3H), 0.70 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, 24 °C, δ): 132.8 (CH), 129.0 (CH), 126.7 (CH), 117.8 (CH), 103.2 (CH), 96.6 (C), 77.5 (CH₂), 77.4 (CH₂), 54.6 (CH₃), 53.5 (CH₃), 43.9 (CH), 37.7 (CH₂), 34.1 (C), 30.7 (CH), 29.9 (CH), 29.5 (C), 23.1 (CH₃), 21.8 (CH₃); HRMS (ESI-TOF) calcd for C₁₈H₂₆O₄Na [M + Na]⁺, 329.1723. Found, 329.1754. IR (neat, cm⁻¹): 2952, 2929, 2848, 1458, 1442, 1391, 1245, 1235, 1131, 1105, 1043, 1029, 1019, 968, 702.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.5b02140.

Crystallographic data for 7d (CIF)

Crystallographic data for 9i (CIF)

Copies of NMR for 6a-6y, 7a-7i, 7m, 7n, 7p-7r, 7t-7v, 7x, 7y, 8l, 8w, 9a-9f, 9h, 9i, 10a, 10b, 11a-11e, 11g,

AUTHOR INFORMATION

Corresponding Author

*E-mail: gjchuang@cycu.edu.tw.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support (103-2113-M-033-006-MY2) from the Ministry of Science and Technology (MOST) of Taiwan. We thank Prof. Chun-Chen Liao and Dr. Michael G. Campbell for helpful discussions.

REFERENCES

(1) (a) Vidari, G.; Vita-Finzi, P. Studies in Natural Products Chemistry;
 Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, 1995; Vol. 17, pp 153–206.
 (b) Daniewski, W. M.; Vidari, G. Progr. Chem. Org. Nat. Prod.
 1999, 77, 69.

- (2) (a) Ayer, W. A.; Browne, L.-M. *Tetrahedron* **1981**, *37*, 2197. (b) Thompson, S. K.; Heathcock, C. H. J. Org. Chem. **1992**, *57*, 5979.
- (3) Camazine, S. M.; Resch, J. F.; Eisner, T.; Meinwald, J. J. *J. Chem. Ecol.* **1983**, *9*, 1439.

(4) Forsby, A.; Andersson, M.; Lewan, L.; Sterner, O. Toxicol. In Vitro 1991, 5, 9.

(5) (a) Sterner, O.; Carter, R.-E.; Nilsson, L.-M. Mutat. Res., Genet. Toxicol. Test. 1987, 188, 169. (b) Anke, H.; Sterner, O.; Steglich, W. J. Antibiot. 1989, 42, 738.

(6) Thompson, S. K.; Heathcock, C. H. J. Org. Chem. 1990, 55, 3004.
(7) Wilson, S. R.; Turner, R. B. J. Org. Chem. 1973, 38, 2870.

(8) Bell, R. P. L.; Wijnberg, J. B. P. A.; de Groot, A. J. Org. Chem. 2001, 66, 2350.

(9) Greenlee, W. J.; Woodward, R. B. J. Am. Chem. Soc. 1976, 98, 6075.

(10) (a) Trost, B. M.; Hipskind, P. A. *Tetrahedron Lett.* **1992**, *33*, 4541. (b) Helmlinger, D.; de Mayo, P.; Nye, M.; Westfelt, L.; Yealts, R. B. *Tetrahedron Lett.* **1970**, *11*, 349. (c) Boeckman, R. K., Jr.; Ko, S. S. J. Am. Chem. Soc. **1980**, *102*, 7146. (d) Tobe, Y.; Yamashita, D.; Takahashi, T.; Inata, M.; Sato, J. I.; Kakiuchi, K.; Kobiro, K.; Odaira, Y.

J. Am. Chem. Soc. **1990**, 112, 775. (11) Morales, P.; Andersson, M.; Lewan, L.; Sterner, O. Mutat. Res., Fundam. Mol. Mech. Mutagen. **1992**, 268, 315.

(12) (a) Gustafsson, J.; Sterner, O. Tetrahedron 1995, 51, 3865.
(b) Johanssona, M.; Aujarda, I.; Rome, D.; Anke, H.; Sterner, O. Z. Naturforsch. 2005, 60b, 984. (c) Rome, D.; Arzel, E.; Johansson, M.; Sterner, O. ARKIVOC 2008, 2008, 91. (d) Bergman, R.; Hansson, T.; Sterner, O.; Wickberg, B. J. Chem. Soc., Chem. Commun. 1990, 865.
(e) Jonassohn, M.; Hjertberg, R.; Anke, H.; Dekermendjian, K.; Szallasi, A.; Thines, E.; Witt, R.; Sterner, O. Bioorg. Med. Chem. 1997, 5, 1363.

(13) For a comprehensive review of oxa-di- π -methane rearrangement, see: Singh, V. Photochemical Rearrangement in $\beta_i\gamma$ -unsaturated Enones: The Oxa-di- π -methane Rearrangement. In *CRC Handbook of Organic Photochemistry and Photobiology*; Horspool, W. M., Lenci, F., Eds.; CRC Press LLC: Boca Raton, FL, 2004; pp 78–1.

(14) (a) Stevens, K. E.; Yates, P. J. Chem. Soc., Chem. Commun. 1980,
990. (b) Yates, P.; Stevens, K. E. Tetrahedron 1981, 37, 4401.
(c) Grewal, R. S.; Hayes, P. C.; Sawyer, J. F.; Yates, P. J. Chem. Soc., Chem. Commun. 1987, 1290. (d) Yates, P.; Grewal, R. S.; Hayes, P. C.; Sawyer, J. F. Can. J. Chem. 1988, 66, 2805.

(15) (a) Singh, V.; Alam, S. Q. Chem. Commun. 1999, 2519.
(b) Singh, V.; Samanta, B.; Kane, V. V. Tetrahedron 2000, 56, 7785.
(c) Singh, V.; Prathap, S.; Porinchu, M. J. Org. Chem. 1998, 63, 4011.
(d) Singh, V.; Vedantham, P.; Sahu, P. K. Tetrahedron Lett. 2002, 43, 519. (e) Singh, V.; Vedan- tham, P.; Sahu, P. K. Tetrahedron 2004, 60, 8161. (f) Singh, V.; Tosh, D. K.; Mobin, S. M. Tetrahedron Lett. 2004,

45, 1729. (g) Singh, V.; Pal, S.; Tosh, D. K.; Mobin, S. M. Tetrahedron 2007, 63, 2446. (h) Singh, V.; Samanta, B. Tetrahedron Lett. 1999, 40, 383.

(16) (a) Reekie, T. A.; Austin, K. A. B.; Banwell, M. G.; Willis, A. C. Aust. J. Chem. 2008, 61, 94. (b) Banwell, M. G.; Edwards, A. J.; Harfoot, G. J.; Jolliffe, K. A. J. Chem. Soc. Perkin Trans. 1 2002, 2439. (c) Banwell, M. G.; Edwards, A. J.; Harfoot, G. J.; Jolliffe, K. A. Tetrahedron 2004, 60, 535. (d) Austin, K. A. B.; Banwell, M. G.; Harfoot, G. J.; Willis, A. C. Tetrahedron Lett. 2006, 47, 7381. (e) Banwell, M. G.; Austin, K. A. B.; Willis, A. C. Tetrahedron 2007, 63, 6388. (f) Bon, D. J.-Y. D.; Banwell, M. G.; C. Tetrahedron 2007, G. J. Aust. J. Chem. 2011, 67, 8348. (g) Banwell, M. G.; Harfoot, G. J. Aust. J. Chem. 2004, 57, 895.

(17) (a) Liao, C.-C.; Wei, C.-P. Tetrahedron Lett. 1989, 30, 2255.
(b) Hsu, D.-S.; Chou, Y.-Y.; Tung, Y.-S.; Liao, C.-C. Chem. - Eur. J. 2010, 16, 3121. (c) Yen, C.-F.; Liao, C.-C. Angew. Chem., Int. Ed. 2002, 41, 4090. (d) Hsu, D.-S.; Rao, P. D.; Liao, C. - C. Chem. Commun. 1998, 1795.

(18) (a) Demuth, M.; Hinsken, W. Helv. Chim. Acta 1988, 71, 569.
(b) Mehta, G.; Subrahmanyam, D. J. Chem. Soc., Chem. Commun. 1985, 768. (c) Mehta, G.; Subrahmanyam, D. J. Chem. Soc., Perkin Trans. 1 1991, 395. (d) Uyehara, T.; Murayama, T.; Sakai, K.; Onda, K.; Ueno, M.; Sato, T. Bull. Chem. Soc. Jpn. 1998, 71, 231.

(19) (a) Schwartz, B. D.; Matousova, E.; White, R.; Banwell, M. G.; Willis, A. C. Org. Lett. **2013**, 15, 1934. (b) Lan, P.; Banwell, M. G.; Willis, A. C. Org. Lett. **2015**, 17, 166.

(20) (a) Katayama, S.; Hiramatsu, H.; Aoe, K.; Yamauchi, M. J. Chem. Soc., Perkin Trans. 1 1997, 561. (b) Singh, V.; Thomas, B.; Sharma, U. Tetrahedron Lett. 1995, 36, 3421. (c) Lee, T.-H; Rao, P.-D.; Liao, C.-C. Chem. Commun. 1999, 801.

(21) (a) Liao, C.-C.; Peddinti, K. R. Acc. Chem. Res. 2002, 35, 856.
(b) Liao, C.-C. Pure Appl. Chem. 2005, 77, 1221. (c) Quideau, S.; Pouysegu, L. Org. Prep. Proced. Int. 1999, 31, 617.

(22) Chittimalla, S. K.; Shiao, H.-Y.; Liao, C.-C. Org. Biomol. Chem. 2006, 4, 2267.

(23) The ORTEP data of 9i can be found in the Supporting Information.